System Bits: Jan. 26


Precisely controlling graphene molecules Researchers at UCLA’s California NanoSystems Institute have found that in the same way gardeners may use sheets of plastic with strategically placed holes to allow plants to grow but keep weeds from taking root, the same basic approach can be applied in terms of placing molecules in the specific patterns they need within tiny nanoelectronic devices, w... » read more

Why Use A Package?


Subramanian Iyer, distinguished chancellor's professor in UCLA's Electrical Engineering Department—and a former fellow and director of the systems scaling technology department at IBM—sat down with Semiconductor Engineering to talk about the future of chip scaling. What follows are excerpts of that conversation. SE: Advanced packaging is being viewed as a way to extend scaling in the fut... » read more

Power/Performance Bits: Jan. 5


A foggy consortium Scientists at Princeton University, ARM, Cisco, Dell, Intel, and Microsoft formed a global effort to develop architectures and tools to further "fog computing" and networks, which aim to harness connected devices' own computing, sensing and storage power to form edge networks that meet most of the demand of user devices that are at the periphery of a more centralized netwo... » read more

System Bits: Nov. 3


Quantum computer architecture Providing a blueprint to build the long-awaited, large-scale quantum computer, University of New South Wales (UNSW) and University of Melbourne researchers have designed a 3D silicon chip architecture based on single atom quantum bits that they said is compatible with atomic-scale fabrication techniques. Headquartered at UNSW, researchers from the Australian R... » read more

Manufacturing Bits: Oct. 27


CD-SAXS makes progress For years, chipmakers have used metrology tools based on various optical techniques, such as scatterometry. But optical-based scatterometry may one day run out of steam, prompting the need for a possible replacement. One long-awaited candidate is called X-ray scattering. There are various flavors of X-ray scattering, including CD small-angle X-ray scattering (CD-SAXS)... » read more

Manufacturing Bits: Oct. 6


Magnetic mass spectrometers The National High Magnetic Field Laboratory (National MagLab) has developed a mass spectrometer, based on what the organization claims is the world’s highest field superconducting magnet. The instrument from National MagLab is called a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The mass spectrometer boasts a 21 tesla magnet, which is ... » read more

Power/Performance Bits: Oct. 6


Portabella batteries Researchers at the University of California, Riverside created a new type of lithium-ion battery anode using portabella mushrooms, which are inexpensive, environmentally friendly and easy to produce. The current industry standard for rechargeable lithium-ion battery anodes is synthetic graphite, which comes with a high cost of manufacturing because it requires tedious pu... » read more

Manufacturing Bits: Sept. 1


Free-electron laser EUV consortium Extreme ultraviolet (EUV) lithography is delayed. Chipmakers hope to insert EUV at the 7nm node, but that’s not a given. As before, the big problem is the EUV light source. So far, the source can’t generate enough power to enable the required throughput for EUV in high-volume production. ASML’s current EUV source is operating at 80 Watts, up from 10 ... » read more

System Bits: July 28


Massless particles for faster electronics Princeton University researchers along with an international team have finally proved a massless particle that had been theorized for 85 years. They say this particle could give rise to faster and more efficient electronics because of its unusual ability to behave as matter and antimatter inside a crystal. [caption id="attachment_21431" align="align... » read more

System Bits: July 21


White graphene can take the heat According to researchers at Rice University, 3D boron nitride structures excel at thermal management for electronics. Rice researchers Rouzbeh Shahsavari and Navid Sakhavand have completed the first theoretical analysis of how 3D boron nitride might be used as a tunable material to control heat flow in such devices. In its 2D form, hexagonal boron nitride... » read more

← Older posts Newer posts →