Manufacturing Bits: Sept. 1


Free-electron laser EUV consortium Extreme ultraviolet (EUV) lithography is delayed. Chipmakers hope to insert EUV at the 7nm node, but that’s not a given. As before, the big problem is the EUV light source. So far, the source can’t generate enough power to enable the required throughput for EUV in high-volume production. ASML’s current EUV source is operating at 80 Watts, up from 10 ... » read more

System Bits: July 28


Massless particles for faster electronics Princeton University researchers along with an international team have finally proved a massless particle that had been theorized for 85 years. They say this particle could give rise to faster and more efficient electronics because of its unusual ability to behave as matter and antimatter inside a crystal. [caption id="attachment_21431" align="align... » read more

System Bits: July 21


White graphene can take the heat According to researchers at Rice University, 3D boron nitride structures excel at thermal management for electronics. Rice researchers Rouzbeh Shahsavari and Navid Sakhavand have completed the first theoretical analysis of how 3D boron nitride might be used as a tunable material to control heat flow in such devices. In its 2D form, hexagonal boron nitride... » read more

DAC 2015 Day 2: Keynotes, Tutorials and More


Walking to DAC, you had to pass the Apple Developers Conference. The line to get in wrapped all the way around the block and there were many peaceful protests directed towards them. Large TV trucks, trucks from CNN, MSNBC and many others lined the streets to hear about new capabilities coming to the group of people who create the Apps for Apple devices. None of them were probably even aware tha... » read more

Power/Performance Bits: April 7


Hybrid supercapacitors Researchers at UCLA combined the best qualities of batteries and supercapacitors in a new 3-D hybrid supercapacitor. Based on laser-scribed graphene and manganese dioxide, the new component stores large amounts of energy, recharges quickly and can last for more than 10,000 recharge cycles. The team also created a microsupercapacitor small enough to fit in wearable o... » read more

Power/Performance Bits: Feb. 24


Simulating ultrafast phenomena Interesting phenomena can happen when electronic states in materials are excited during dynamic processes. As an example, electrical charge transfer can take place on quadrillionth-of-a-second, or femtosecond, timescales. Numerical simulations in real-time provide the best way to study these processes. Such simulations, however, can be extremely expensive. R... » read more

System Bits: Feb. 10


Mapping temperature Given that overheating is a major problem for chips today a team of UCLA and USC scientists have made a breakthrough that they believe should enable engineers to design microprocessors that minimize that problem with a thermal imaging technique that can see how the temperature changes from point to point inside the smallest electronic circuits. The technique is called pl... » read more

Power/Performance Bits: Nov. 25


Better photodetectors Photodetectors are semiconductor devices that convert incoming light into electrical signals used in a vast array of products, from visible and infrared light detection systems to television remote controls. Meanwhile, perovskite is an organic-inorganic hybrid material with a crystal structure that is very efficient at converting light into electricity, and in recent year... » read more

The Week In Review: Manufacturing


A majority of Americans cannot endure more than two hours without checking their electronic devices, according to new data released in the Crucial.com Tech-Life Balance Survey. One in four Americans becomes stressed by going longer than 30 minutes without checking their email or phone due to a fear of missing out. Additionally, one in five would sooner go to dinner with an ex significant other ... » read more

System Bits: Nov. 11


How transistors operate at absolute zero Research led by scientists at Chalmers University of Technology in Sweden and Caltech in California have demonstrated how noise in a microwave amplifier is limited by self-heating at very low temperatures, which is expected to be of importance for future discoveries in such as quantum computers and radio astronomy. The team also included researchers ... » read more

← Older posts Newer posts →