Week in Review – IoT, Security, Autos


Products/Services Cadence Design Systems is working with Adesto Technologies to grow the Expanded Serial Peripheral Interface (xSPI) communication protocol ecosystem, for use in Internet of Things devices. The Cadence Memory Model for xSPI allows customers to ensure optimal use of the octal NOR flash with the host processor in an xSPI system, including support for Adesto’s EcoXiP octal xSPI ... » read more

System Bits: July 23


Superconductivity seen in trilayer graphene Stanford University and University of California at Berkeley researchers discovered signs of superconductivity in stacking three-layer sheets of graphene, they report. “It’s definitely an exciting development,” says Cory Dean, a physicist at Columbia University. Dean notes that bilayer graphene superconducts only when the atomic lattices of ... » read more

System Bits: April 2


Transparent film is stronger than aluminum Professor Ton Peijs of WMG at the University of Warwick and Professor Cees Bastiaansen at Queen Mary University of London came up with a new processing technique that produces a transparent polythene film said to be stronger than aluminum. The film could be used in displays, glazing, visors, and windshields, without adding significant weight. The d... » read more

Manufacturing Bits: Feb. 19


Computed Axial Lithography Lawrence Livermore National Laboratory (LLNL) and the University of California at Berkeley have developed a 3D printing method to produce a new class of polymer parts. The technology, called Computed Axial Lithography (CAL), projects photons on a resin in a vial within a 3D printer. In total, researchers have demonstrated the ability to shine 1,440 different proje... » read more

System Bits: Feb. 5


Rubbery material for stretchable electronics Researchers at the University of Houston came up with a rubbery semiconducting material that they say could find applications in stretchable electronics, such as human-machine interfaces, implantable bioelectronics, and robotic skins. Cunjiang Yu, Bill D. Cook Assistant Professor of mechanical engineering at the University of Houston and correspo... » read more

System Bits: Dec. 26


Adding learning to computer vision UCLA’s Samueli School of Engineering and Stanford University are working on advanced computer vision technology, using artificial intelligence to help vision systems learn to identify faces, objects and other things on their own, without training by humans. The research team breaks up images into chunks they call “viewlets,” then they have the computer ... » read more

Manufacturing Bits: June 12


Elastic diamonds A group has developed a way to make elastic diamonds, enabling tiny diamond needles that can flex and stretch. Ulsan National Institute of Science and Technology (UNIST), the Massachusetts Institute of Technology (MIT), the City University of Hong Kong and Nanyang Technological University have developed a process that enables elastic diamonds. Elastic diamonds could one day... » read more

Manufacturing Bits: Jan. 9


Two-photon lithography Lawrence Livermore National Laboratory (LLNL) has extended the capabilities of a high-resolution 3D printing technique called two-photon lithography (TPL). TPL enables the development of 3D-printed objects. LLNL’s technology could enable 3D-printed embedded structures inside the body, such as stents, joint replacements or bone scaffolds. It could also one day be ... » read more

Exploring New Scaling Approaches


At the recent SPIE Photomask Technology + Extreme Ultraviolet Lithography 2017 conference, Semiconductor Engineering sat down to discuss semiconductor technology with Tsu-Jae King Liu, the TSMC Distinguished Professor in Microelectronics in the Department of Electrical Engineering and Computer Sciences at the University of California at Berkeley. More specifically, Liu discussed some of the new... » read more

Manufacturing Bits: Sept. 19


Ion implant lithography At a recent conference, the University of California at Berkeley presented more details about its efforts to develop a multiple patterning method using tilted ion implantation (TII) technology. TII is somewhat similar today’s self-aligned double patterning (SADP) processes in logic and memory. SADP and the follow-on technology, self-aligned quadruple (SAQP), enable... » read more

← Older posts