Power/Performance Bits: Nov. 27


Hybrid solar for hydrogen and electricity Researchers at the Lawrence Berkeley National Laboratory developed an artificial photosynthesis solar cell capable of both storing the sun's energy as hydrogen through water splitting and outputting electricity directly. The hybrid photoelectrochemical and voltaic (HPEV) cell gets around a limitation of other water splitting devices that shortchange... » read more

System Bits: July 3


Machine learning network for personalized autism therapy MIT Media Lab researchers have developed a personalized deep learning network for therapy use with children with autism spectrum conditions. They reminded these children often have trouble recognizing the emotional states of people around them, such as distinguishing a happy face from a fearful face. To help with this, some therapists... » read more

System Bits: April 24


Some superconductors carry spin currents A few years ago, researchers from the University of Cambridge showed that it was possible to create electron pairs in which the spins are aligned: up-up or down-down. The spin current can be carried by up-up and down-down pairs moving in opposite directions with a net charge current of zero, and the ability to create such a pure spin super-current is an... » read more

Power/Performance Bits: April 17


Flexible LCDs Researchers at Donghua University and Hong Kong University of Science and Technology developed a flexible, optically rewriteable LCD for paperlike displays. The team estimates it will be cheap to produce, perhaps only costing $5 for a 5-inch screen. Optically rewriteable LCDs, like conventional LCDs, are structured like a sandwich, with a liquid crystal filling between two ... » read more

Power/Performance Bits: April 3


Long-lived data storage Scientists from RMIT University and Wuhan Institute of Technology demonstrated a next-generation optical disk with up to 10TB capacity and a six-century lifespan using gold nanoparticles. The technology could radically improve the energy efficiency of data centers according to the researchers, using 1000 times less power than a hard disk center by requiring far less ... » read more

Chipmakers Look To New Materials


Graphene, the wonder material rediscovered in 2004, and a host of other two-dimensional materials are gaining ground in manufacturing semiconductors as silicon’s usefulness begins to fade. And while there are a number of compounds in use already, such as gallium arsenide, gallium nitride, and silicon carbide, those materials generally are being confined to specific niche applications. Tran... » read more

Power/Performance Bits: Dec. 5


Solar jet fuel Researchers at ETH Zurich demonstrated the ability to use solar energy to create the precursor to jet fuel from water and carbon dioxide, a process that could lead to carbon-neutral air travel. The scientists performed 295 consecutive cycles in a 4 kW solar reactor, yielding 700 standard liters of hydrogen and carbon monoxide (syngas), the precursor to kerosene and other liqu... » read more

System Bits: Oct. 3


Polariton graphs In a development that a team of researchers from the UK and Russia say could eventually surpass the capabilities of even the most powerful supercomputers, a type of ‘magic dust’ — which combines light and matter — can be used to solve complex problems. Hailing from the University of Cambridge, University of Southampton and Cardiff University in the UK and the Skolk... » read more

Power/Performance Bits: Sept. 19


Healing perovskites A team from the University of Cambridge, MIT, University of Oxford, University of Bath, and Delft University of Technology discovered a way to heal defects in perovskite solar cells by exposing them to light and just the right amount of humidity. While perovskites show promise for low-cost, efficient photovoltaics, tiny defects in the crystalline structure, called traps,... » read more

System Bits: July 11


An algorithm to diagnose heart arrhythmias with cardiologist-level accuracy To speed diagnosis and improve treatment for people in rural locations, Stanford University researchers have developed a deep learning algorithm can diagnose 14 types of heart rhythm defects better than cardiologists. The algorithm can sift through hours of heart rhythm data generated by some wearable monitors to f... » read more

← Older posts Newer posts →