Manufacturing Bits: August 18


Making quantum robots Quantum dots are inorganic semiconductor nano-crystals. The technology can be used to boost the color gamut in LCD TVs. It can also be used in LEDs and other products. The problem? Quantum dots are expensive to fabricate. With funding from Dow Chemical, the University of Illinois at Urbana-Champaign has developed a new fabrication process. In doing so, researchers a... » read more

Manufacturing Bits: August 11


World neutrino record The U.S. Department of Energy’s Fermi National Accelerator Laboratory has achieved a world record for high-energy neutrino experiments. In one neutrino experiment, researchers sustained a 521-kilowatt beam generated by the organization’s so-called Main Injector particle accelerator. The previous record was a 400-plus-kilowatt beam, which was accomplished at CERN. ... » read more

System Bits: June 30


Implantable drug-delivery chip An implantable, microchip-based device developed by MIT spinout Microchips Biotech may soon replace the injections and pills now needed to treat chronic diseases. The company partnered with Teva Pharmaceutical to commercialize its wirelessly controlled, implantable, microchip-based devices that store and release drugs inside the body over many years. [caption id... » read more

Power/Performance Bits: June 2


Printing RF antennas with graphene ink Researchers from the University of Manchester, together with BGT Materials Limited, a graphene manufacturer in the United Kingdom, printed a radio frequency antenna using compressed graphene ink. The antenna performed well enough to make it practical for use in RFID tags and wireless sensors, the researchers said. Even better, the antenna is flexible, e... » read more

Power/Performance Bits: May 19


3D microbatteries for large-scale on-chip integration By combining 3D holographic lithography and 2D photolithography, researchers from the University of Illinois at Urbana-Champaign created a high-performance 3D microbattery suitable for large-scale on-chip integration with microelectronic devices. According to Paul Braun, professor of materials science and engineering at Illinois, "Micr... » read more

Power/Performance Bits: March 17


Artificial photosynthesis: leaves of nickel Inspired by a chemical process found in leaves, Caltech scientists developed an electrically conductive film that could help pave the way for devices capable of harnessing sunlight to split water into hydrogen fuel. When applied to semiconducting materials (it's been tested with silicon, indium phosphide, and cadmium telluride), the team's film ... » read more

Power/Performance Bits: Feb. 10


Solar power technology progresses at a snappy pace and the diversity of approaches keeps expanding. In this edition, investigations in two aspects of solar energy design: understanding a potential solar cell material and a design to make those we use now more effective. Unravelling the peculiarities of nanocrystals Researchers at ETH Zurich conducted an extensive study of nanocrystal ... » read more

Week 34: January 23, A Perfect Friday


Designer and IP track submissions are up 27% compared to 2014. This is an amazing success and we have to thank all the designer track and IP track subcommittee members for getting the word out and motivating their industry peers to submit in such numbers. Tallying it up, it appears we received the most submissions since we started the designer track back in 2010 (we called it the user track bac... » read more

System Bits: Nov. 12


3D Printers When thinking about 3D printers, most people probably think about creating small plastic parts or prototypes. 3D printing now can be used to print lithium-ion microbatteries the size of a grain of sand. The printed microbatteries could supply electricity to tiny devices in fields from medicine to communications, including many that have lingered on lab benches for lack of a batt... » read more

Manufacturing Bits: Oct. 15


Better Beer Rice University has devised a polymer material that could boost the properties of natural gas, beer and soda. By adding modified, single-atom-thick graphene nanoribbons (GNRs) to thermoplastic polyurethane (TPU), Rice’s polymer material could make it more practical for vehicles to run on compressed natural gas. The material is far more impermeable to pressurized gas and lighte... » read more

← Older posts Newer posts →