System Bits: Feb. 20


An evolution in electronics Restoring some semblance to those who have lost the sensation of touch has been a driving force behind Stanford University chemical engineer Zhenan Bao’s decades-long quest to create stretchable, electronically-sensitive synthetic materials. [caption id="attachment_24131783" align="aligncenter" width="300"] Zhenan Bao, the K.K. Lee professor of chemical engineer... » read more

Using Run-Time Reverse-Engineering to Optimize DRAM Refresh


Abstract: "The overhead of DRAM refresh is increasing with each density generation. To help offset some of this overhead, JEDEC designed the modern Auto-Refresh command with a highly optimized architecture internal to the DRAM---an architecture that violates the timing rules external controllers must observe and obey during normal operation. Numerous refresh-reduction schemes manually refresh ... » read more

Power/Performance Bits: Sept. 12


Water-based li-ion battery Researchers at the University of Maryland and the U.S. Army Research Laboratory developed a lithium-ion battery that uses a water-salt solution as its electrolyte and reaches the 4.0 volt mark desired for household electronics, without the fire and explosive risks associated with some commercially available non-aqueous lithium-ion batteries. The battery provides i... » read more

Power/Performance Bits: Dec. 27


Tiny diamond radio Researchers at Harvard built the world's smallest radio receiver, built out of an assembly of atomic-scale defects in pink diamonds. The radio uses tiny imperfections in diamonds called nitrogen-vacancy (NV) centers. To make NV centers, researchers replace one carbon atom in a diamond crystal with a nitrogen atom and remove a neighboring atom -- creating a system that i... » read more

System Bits: Aug. 9


Using trapped ions as quantum bits MIT researchers reminded that quantum computers are largely hypothetical devices that could perform some calculations much more rapidly than conventional computers can, and instead of the bits of classical computation — which can represent 0 or 1 — quantum computers consist of quantum bits, or qubits, which can, in some sense, represent 0 and 1 simultaneo... » read more

How To Build Systems In Package


The semiconductor industry is racing to define a series of road maps for semiconductors to succeed the one created by the ITRS, which will no longer be updated, including a brand new one focused on heterogeneous integration. The latest entry will establish technology targets for integration of heterogeneous multi-die devices and systems. It has the support of IEEE's Components, Packaging and... » read more

Power/Performance Bits: Feb. 23


Apple core batteries Apple waste could help reduce the cost of energy storage, say researchers seeking an improved sodium-ion at the Helmholtz Institute Ulm of Karlsruhe Institute of Technology. Sodium-ion batteries are not only far more powerful than nickel-metal hydride or lead acid accumulators, but also represent an alternative to lithium-ion technology, as the initial materials neede... » read more

Power/Performance Bits: Nov. 25


Insect robots on the water Taking inspiration from water beetles and other swimming insects, academics at the Bristol Robotics Laboratory have developed the "Row-bot," a robot that thrives in dirty water. The Row-bot mimics the way that one aquatic insect, the water boatman, moves and the way that it feeds on rich organic matter in the dirty water it swims in. The Row-bot project aims to ... » read more

Power/Performance Bits: May 5


Single material batteries Engineers at the University of Maryland created a battery made entirely out of a single material that, by incorporating the properties of both the electrodes and electrolyte, can both move electricity and store it. The reason the new battery is revolutionary is because it solves the problem of what happens at the interface between the electrolyte and the electrod... » read more

Power/Performance Bits: Feb. 17


What can snails teach us about creating batteries? Evgenia Barannikova, a graduate student at University of Maryland, Baltimore County presented the current state of research in using biology to improve the properties of lithium ion batteries at the 59th annual meeting of the Biophysical Society, held Feb. 7-11 in Baltimore, Maryland. One of the inspirations for her research was the way t... » read more

Newer posts →