Power Challenges In ML Processors


The design of artificial intelligence (AI) chips or machine learning (ML) systems requires that designers and architects use every trick in the book and then learn some new ones if they are to be successful. Call it style, call it architecture, there are some designs that are just better than others. When it comes to power, there are plenty of ways that small changes can make large differences.... » read more

Three Steps To Faster Low Power Coverage Using UPF 3.0 Information Models


Controlling power has its costs. The added power elements and their interactions make verification of low-power designs much more difficult and the engineer’s job overwhelmingly complex and tedious. Early versions of the Unified Power Format (UPF) provided some relief, but lacked provisions for a standardized methodology for low-power coverage. Ad hoc approaches are error prone and highly ... » read more

Static Verification Of Low Power Designs


Are there any chips designed today that don’t have limitations on their power consumption? For smartphones and tablets, increasing the time between charges is a clear product differentiator and a frequent design goal. Power consumption is also an issue for Internet-of-Things (IoT) devices, many of which are in inaccessible locations where battery replacement or recharge is difficult. Even com... » read more

Power Complexity On The Rise


New chip architectures and custom applications are adding significant challenges to chip design and verification, and the problems are becoming much more complex as low power is added into the mix. Power always has been a consideration in design, but in the past it typically involved different power domains that were either on, off, or in some level of sleep mode. As hardware architectures s... » read more

Rapid Evolution For Verification Plans


Verification plans are rapidly evolving from mechanisms to track verification progress into multi-faceted coordination vehicles for several teams with disparate goals, using complex resource management spread across multiple abstractions and tools. New system demands from industries such as automotive are forcing tighter integration of those plans with requirements management and product lif... » read more

Extending Portable Stimulus


It has been a year since Accellera's Portable Test and Stimulus Specification became a standard. Semiconductor Engineering sat down to discuss the impact it has had, and the future direction of it, with Larry Melling, product management director for Cadence; Tom Fitzpatrick, strategic verification architect for Mentor, a Siemens Business; Tom Anderson, technical marketing consultant for OneSpin... » read more

Shift Left Power-Aware Static Verification


Next-generation SoCs with advanced graphics, computing, machine learning (ML) and artificial intelligence (AI) capabilities are posing new unseen challenges in Low Power Verification. These techniques can introduce critical bugs into a design, especially when the power-management infrastructure interacts with signals that cross clock or reset domains. This can create additional clock-domain cro... » read more

Writing Reusable UPF For RTL And Gate-Level Low Power Verification


By Durgesh Prasad, Jitesh Bansal and Madhur Bhargava The Unified Power Format (UPF) is used to specify the power intent of a design. Once written, the UPF file is applied at every stage of the design cycle — starting with the RTL, then the gate-level, and finally during place and route. A major problem is that the UPF needs to be refined or modified at every stage to keep it compatible ... » read more

Four Steps For Static Verification Of Low Power Designs Using UPF With VC LP


Low power consumption has always been a key requirement for portable electrical and electronic devices. In recent years, this requirement has been extended to many more categories of end products. The electronics industry has developed a wide range of techniques for power management and has defined the Unified Power Format (UPF) to describe design intent for some of the most common methods. Suc... » read more

Empowering UPF Commands With Effective Elements Lists


The Unified Power Format (UPF) is intended for power management, power aware verification, and low power implementation. The more we explore the inherent features of UPF commands and options, and comprehend their interrelation, the more we become accurate, productive, and consistent in developing UPF for our intended purposes. Although the UPF is very well defined through the IEEE 1801 LRM, ... » read more

← Older posts