Power/Performance Bits: April 24


Waste heat to power Engineers at the University of California, Berkeley, developed a thin-film system that can be applied to electronics to turn waste heat into energy. The thin-film system uses pyroelectric energy conversion, which is well suited for tapping into waste-heat energy supplies below 100 degrees Celsius, called low-quality waste heat. In particular, the technology might be part... » read more

Power/Performance Bits: Apr. 10


Lithium-air battery Researchers at the University of Illinois at Chicago and Argonne National Laboratory designed a new lithium-air battery that works in a natural air environment and still functioned after 750 charge/discharge cycles, a record for this battery type. In theory, lithium-air batteries work by combining lithium present in the anode with oxygen from the air to produce lithium p... » read more

(Smart) Watch this Space


The development of smart devices and the increasing possibilities of its features has lead to a search for a new frontier for technology. The idea of wearable technology has existed in science fiction and other speculative fiction, but only recently has wearable technology became a reality this decade with the introduction of wearables such as smartwatches. The development of smartwatches has n... » read more

Power/Performance Bits: Feb. 13


Silicon spintronics Engineers at the University of California, Riverside, developed new methods to detect signals from spintronic components made of low-cost metals and silicon. Spintronic devices generate little heat, use relatively minuscule amounts of electricity, and would require no energy to maintain data in memory. However, previously developed spintronic devices depend on complex struc... » read more

Power/Performance Bits: Jan. 9


Eel-inspired power Researchers at the University of Michigan, the University of Fribourg, and the University of California-San Diego developed soft power cells with the potential to power implanted medical devices. Made of hydrogel and salt, the soft cells form the first potentially biocompatible artificial electric organ that generates more than 100 volts at a low current, the team says, enou... » read more

The IoT Is Alive And Well


There has been a lot of grumbling lately about the IoT and how it has failed to live up to expectations. But the problem may be less about the success of the IoT than the ability of any group of chipmakers and manufacturers to capitalize on its success. The IoT has been growing steadily since the term was first coined by Kevin Ashton, who began using RFID inside of Procter & Gamble to ma... » read more

Power/Performance Bits: Dec. 5


Solar jet fuel Researchers at ETH Zurich demonstrated the ability to use solar energy to create the precursor to jet fuel from water and carbon dioxide, a process that could lead to carbon-neutral air travel. The scientists performed 295 consecutive cycles in a 4 kW solar reactor, yielding 700 standard liters of hydrogen and carbon monoxide (syngas), the precursor to kerosene and other liqu... » read more

Medical IoT Heats Up


Ever since the IoT was first introduced as a concept, the possibility of using ordinary devices or chips for monitoring health has been mostly an unfulfilled promise. In fact, one of the biggest selling points of smart watches and other wearables initially was the ability to monitor everything from heart irregularities to sugar levels on a continuous basis rather than a once-a-year electroca... » read more

Power/Performance Bits: Oct. 17


Harvesting body heat Researchers at the Georgia Institute of Technology developed a flexible, wearable thermoelectric generator that can harvest energy from body heat to power simple biosensors. Thermoelectric generators have been available for decades, but standard designs use inflexible inorganic materials that are too toxic for use in wearable devices. The team's device uses thousands... » read more

Power/Performance Bits: Sept. 26


Long-range communication Researchers at the University of Washington developed devices that run on almost zero power can transmit data across distances of up to 2.8 kilometers. The long-range backscatter system, which uses reflected radio signals to transmit data at extremely low power, achieved reliable coverage throughout 4800-square-foot house, an office area covering 41 rooms and a one-acr... » read more

← Older posts Newer posts →