Protecting The Connected Automobile From Modern-Day Cyberattacks


As the industry continues to make advances in the autonomous vehicle as well as in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, automotive OEMs must do everything possible to protect the connected automobile from potential cyberattacks. Unfortunately, attacks have become so prevalent, regulatory agencies are now defining cybersecurity requirements. New laws are b... » read more

Over-the-Air Automotive Updates


Modern vehicles are increasingly-connected devices with growing volumes of electronic systems. This systemic complexity means that even an average vehicle design will include over 150 ECUs, which control not just infotainment and communications, but powertrain, safety, and driving systems (figure 1). We see not just a surge in the volume and complexity of electronic hardware, but also software.... » read more

Four Steps To Resolving Reset Domain Crossing Data-Corruption In Automotive SoCs


By Kurt Takara (Siemens EDA), Ankush Sethi (NXP), and Aniruddha Gupta (NXP) Modern automotive SoCs typically contain multiple asynchronous reset signals to ensure systematic functional recovery from unexpected situations and faults. This complex reset architecture leads to a new set of problems such as possible reset domain crossing (RDC) issues. Conventional clock domain crossing (CDC) veri... » read more

EV Electrical System Development With Generative Design


Automotive electrical and electronic (E/E) systems are becoming more complex, making the task of designing today’s cars much more difficult. Infotainment, comfort and convenience features, and even safety- and mission-critical systems such as steering and throttle control are accomplished through electrically powered computers, actuators, and sensors. Electric vehicles (EVs) will only incr... » read more

A New Method For Electrical Systems Design


Electrical system complexity is reaching a tipping point across industries, from modern passenger vehicles to sophisticated industrial machines that can now contain nearly 5,000 wiring harnesses. The electrical systems of these machines contain multiple networks, thousands of sensors and actuators, miles of wiring and tens of thousands of discrete components (figure 1). Designing these complex ... » read more

How End-To-End Solutions Support Tomorrow’s Automotive Electrical Systems


We are living in a time of significant change and disruption in the automotive industry. The amount of electrical and electronic content in today’s vehicles continues to explode as consumers demand greater personalization of products and regular feature updates, and as tomorrow’s technologies such as autonomous and electric drive continue to develop. Meanwhile, established carmakers are gra... » read more

Secure Silicon Lifecycle Management Architecture For Functional Safety


The rapid growth of electronics for automotive applications fueled by advanced ADAS systems pose new challenges for complex SoC design and Silicon Lifecycle Management (SLM) in the supply chain as well as in-field monitoring and management of the population of chips. In these modern complex devices, ensuring the correct and safe operation requires not only functional safety to check for reli... » read more

Using Critical Area To Boost Automotive IC Test Quality


To compete in the fast-growing market for automotive ICs, semiconductor companies need to address new challenges across the entire design flow. To meet the ISO 26262 goal of zero defective parts per million (DPPM), DFT engineers have embraced new test pattern types, including cell-aware, interconnect, and inter-cell bridge (cell neighborhood). But the traditional methods of choosing the types o... » read more

Best Practices And Constraint Management Tools Speed RF Design For The IoT


By Jim Martens and David Zima The IoT has increased the demand for good radio frequency (RF) design practices from the mains, to wall outlet power, all the way to the antenna. With several IoT standards employed today, constraint management has become critical to ensuring that designs meet product performance and reliability. Even the simplest of IoT designs can benefit from constraint ma... » read more

Mitigating The Effects Of Radiation On Advanced Automotive ICs


The safety considerations in an automotive IC application have similarities to what is seen in other safety critical industries, such as the avionics, space, and industrial sectors. ISO 26262 is the state-of-the-art safety standard guiding the safety activities and work products required for electronics deployed in an automotive system. ISO 26262 requires that a design be protected from the eff... » read more

← Older posts Newer posts →