Manufacturing Bits: March 17


Making MXenes Drexel University and the Materials Research Center in the Ukraine have devised a system for use in making large quantities of MXenes, a promising set of materials used for energy storage and related applications. A class of two-dimensional inorganic compounds, MXenes consist of thin atomic layers. The materials are based on transition metal carbides, nitrides or carbonitrides... » read more

Power/Performance Bits: March 17


MRAM speed Researchers at ETH Zurich and Imec investigated exactly how quickly magnetoresistive RAM (MRAM) can store data. In the team's MRAM, electrons with opposite spin directions are spatially separated by the spin-orbit interaction, creating an effective magnetic field that can be used to invert the direction of magnetization of a tiny metal dot. "We know from earlier experiments, i... » read more

Manufacturing Bits: March 9


Finding cures for coronavirus The Department of Energy’s Oak Ridge National Laboratory (ORNL) is using the world’s most powerful supercomputer to identify drug compounds and cures for the coronavirus. [caption id="attachment_24162601" align="alignleft" width="300"] Summit supercomputer. Source: Oak Ridge National Laboratory[/caption] The supercomputer, called Summit, has identified 7... » read more

Power/Performance Bits: March 9


Healing perovskites Researchers at Brown University found that while perovskite solar cells can crack easily, they are also capable of healing those cracks. "The efficiency of perovskite solar cells has grown very quickly and now rivals silicon in laboratory cells," said Nitin Padture, a professor in Brown's School of Engineering and director of Brown's Institute for Molecular and Nanoscale... » read more

Manufacturing Bits: March 3


Security lithography At the recent SPIE Advanced Lithography conference, Multibeam disclosed more details about its efforts to develop multi-beam direct-write lithography for chip security applications. David Lam, chief executive and chairman of Multibeam, described how multi-beam lithography can be used to help thwart IC counterfeiting and tampering in the market. This lithography technolo... » read more

Power/Performance Bits: March 3


Optimizing fiber networks Researchers at Chalmers University of Technology are working towards reducing the energy consumption of fiber optic communications before the amount of electricity required by the Internet becomes too great to manage. To improve overall efficiency, the team tackled several aspects of fiber optic cables. One of the major energy drains the team identified was the err... » read more

Manufacturing Bits: Feb. 25


Diamond finFETs HRL Laboratories has made new and significant progress to develop diamond finFETs. HRL, a joint R&D venture between Boeing and General Motors, has developed a new ohmic regrowth technique for diamond FETs. This in turn could pave the way towards commercial diamond FETs. Applications include spacecraft, satellites and systems with extreme temperatures. Still in R&D, diamo... » read more

Power/Performance Bits: Feb. 25


Thinner, flexible touchscreens Researchers from RMIT University, University of New South Wales, and Monash University developed a thin, flexible electronic material for touchscreens. The material is 100 times thinner than current touchscreen materials. The new screens are still based on indium-tin oxide (ITO), a common touchscreen material. However, a liquid metal printing approach was used... » read more

Manufacturing Bits: Feb. 18


Molecular layer etch The U.S. Department of Energy’s Argonne National Laboratory has made new advances in the field of molecular layer etching or etch (MLE). MLE is related to atomic layer etch (ALE). Used in the semiconductor industry, ALE selectively removes targeted materials at the atomic scale without damaging other parts of the structure. ALE is related to atomic layer deposition... » read more

Power/Performance Bits: Feb. 18


Cryogenic memory Researchers at Oak Ridge National Laboratory demonstrated a new cryogenic memory cell circuit design based on coupled arrays of Josephson junctions. Such a memory could help enable exascale and quantum computing. The cells are designed to operate in super cold temperatures and were tested at just 4 Kelvin above absolute zero, about minus 452 degrees Fahrenheit. At these col... » read more

← Older posts Newer posts →