Big Changes Ahead For Inside Auto Cabins


The space we occupy inside our vehicles is poised to change from mere enclosure to participant in the driving experience. Whether for safety or for comfort, a wide range of sensors are likely to appear that will monitor the “contents” of the vehicle. The overall approach is referred to as an in-cabin monitoring system (ICMS), but the specific applications vary widely. “In-cabin sensing... » read more

Why It’s So Difficult — And Costly — To Secure Chips


Rising concerns about the security of chips used in everything from cars to data centers are driving up the cost and complexity of electronic systems in a variety of ways, some obvious and others less so. Until very recently, semiconductor security was viewed more as a theoretical threat than a real one. Governments certainly worried about adversaries taking control of secure systems through... » read more

Missing Interposer Abstractions And Standards


The design and analysis of an SoC based on an interposer is not for the faint of heart today, but the industry is aware of the challenges and is attempting to solve them. Until that happens, however, it will be a technique that only large companies can deploy because they need to treat everything almost as if it were a single die. The construction of large systems uses techniques, such as ab... » read more

China Accelerates Foundry, Power Semi Efforts


China has unveiled several initiatives to advance its domestic semiconductor industry, including a new and massive fab expansion campaign in the foundry, gallium-nitride (GaN), and silicon carbide (SiC) markets. The nation is making a big push into what it calls “third-generation semiconductors,” which is a misnomer. The term actually refers to two existing and common power semiconductor... » read more

Easier And Faster Ways To Train AI


Training an AI model takes an extraordinary amount of effort and data. Leveraging existing training can save time and money, accelerating the release of new products that use the model. But there are a few ways this can be done, most notably through transfer and incremental learning, and each of them has its applications and tradeoffs. Transfer learning and incremental learning both take pre... » read more

Scaling Bump Pitches In Advanced Packaging


Interconnects for advanced packaging are at a crossroads as an assortment of new package types are pushing further into the mainstream, with some vendors opting to extend the traditional bump approaches while others roll out new ones to replace them. The goal in all cases is to ensure signal integrity between components in IC packages as the volume of data being processed increases. But as d... » read more

HBM3: Big Impact On Chip Design


An insatiable demand for bandwidth in everything from high-performance computing to AI training, gaming, and automotive applications is fueling the development of the next generation of high-bandwidth memory. HBM3 will bring a 2X bump in bandwidth and capacity per stack, as well as some other benefits. What was once considered a "slow and wide" memory technology to reduce signal traffic dela... » read more

Software-Hardware Co-Design Becomes Real


For the past 20 years, the industry has sought to deploy hardware/software co-design concepts. While it is making progress, software/hardware co-design appears to have a much brighter future. In order to understand the distinction between the two approaches, it is important to define some of the basics. Hardware/software co-design is essentially a bottom-up process, where hardware is deve... » read more

System-In-Package Thrives In The Shadows


IC packaging continues to play a big role in the development of new electronic products, particularly with system-in-package (SiP), a successful approach that continues to gain momentum — but mostly under the radar because it adds a competitive edge. With a SiP, several chips and other components are integrated into a package, enabling it to function as an electronic system or sub-system. ... » read more

Will Monolithic 3D DRAM Happen?


As DRAM scaling slows, the industry will need to look for other ways to keep pushing for more and cheaper bits of memory. The most common way of escaping the limits of planar scaling is to add the third dimension to the architecture. There are two ways to accomplish that. One is in a package, which is already happening. The second is to sale the die into the Z axis, which which has been a to... » read more

← Older posts Newer posts →