Convolutional Neural Networks: Co-Design of Hardware Architecture and Compression Algorithm


Researchers at Soongsil University (Korea) published "A Survey on Efficient Convolutional Neural Networks and Hardware Acceleration." Abstract: "Over the past decade, deep-learning-based representations have demonstrated remarkable performance in academia and industry. The learning capability of convolutional neural networks (CNNs) originates from a combination of various feature extraction... » read more

Vulnerability of Neural Networks Deployed As Black Boxes Across Accelerated HW Through Electromagnetic Side Channels


This technical paper titled "Can one hear the shape of a neural network?: Snooping the GPU via Magnetic Side Channel" was presented by researchers at Columbia University, Adobe Research and University of Toronto at the 31st USENIX Security Symposium in August 2022. Abstract: "Neural network applications have become popular in both enterprise and personal settings. Network solutions are tune... » read more

Artificial Neural Network (ANN)-Based Model To Evaluate The Characteristics of A Nanosheet FET (NSFET)


This new technical paper titled "Machine-Learning-Based Compact Modeling for Sub-3-nm-Node Emerging Transistors" was published by researchers at SungKyunKwan University, Korea. Abstract: "In this paper, we present an artificial neural network (ANN)-based compact model to evaluate the characteristics of a nanosheet field-effect transistor (NSFET), which has been highlighted as a next-generat... » read more

Algorithm HW Framework That Minimizes Accuracy Degradation, Data Movement, And Energy Consumption Of DNN Accelerators (Georgia Tech)


This new research paper titled "An Algorithm-Hardware Co-design Framework to Overcome Imperfections of Mixed-signal DNN Accelerators" was published by researchers at Georgia Tech. According to the paper's abstract, "In recent years, processing in memory (PIM) based mixed-signal designs have been proposed as energy- and area-efficient solutions with ultra high throughput to accelerate DNN com... » read more

ML Architecture for Solving the Inverse Problem for Matter Wave Lithography: LACENET


This recent technical paper titled "Realistic mask generation for matter-wave lithography via machine learning" was published by researchers at University of Bergen (Norway). Abstract: "Fast production of large area patterns with nanometre resolution is crucial for the established semiconductor industry and for enabling industrial-scale production of next-generation quantum devices. Metasta... » read more

ML-Based Framework for Automatically Generating Hardware Trojan Benchmarks


A new technical paper titled "Automatic Hardware Trojan Insertion using Machine Learning" was published by researchers at University of Florida and Stanford University. Abstract (partial): "In this paper, we present MIMIC, a novel AI-guided framework for automatic Trojan insertion, which can create a large population of valid Trojans for a given design by mimicking the properties of a small... » read more

Novel In-Pixel-in-Memory (P2M) Paradigm for Edge Intelligence (USC)


A new technical paper titled "A processing-in-pixel-in-memory paradigm for resource-constrained TinyML applications" was published by researchers at University of Southern California (USC). According to the paper, "we propose a novel Processing-in-Pixel-in-memory (P2M) paradigm, that customizes the pixel array by adding support for analog multi-channel, multi-bit convolution, batch normaliza... » read more

Training a Quantum Neural Network Requires Only A Small Amount of Data


A new research paper titled "Generalization in quantum machine learning from few training data" was published by researchers at Technical University of Munich, Munich Center for Quantum Science and Technology (MCQST), Caltech, and Los Alamos National Lab. “Many people believe that quantum machine learning will require a lot of data. We have rigorously shown that for many relevant problems,... » read more

Polynesia, A Novel Hardware/Software Cooperative Design for In-Memory HTAP Databases


A team of researchers from ETH Zurich, Google and Univ. of Illinois Urbana-Champaign recently published a technical paper titled "Polynesia: Enabling High-Performance and Energy-Efficient Hybrid Transactional/Analytical Databases with Hardware/Software Co-Design". Abstract (partial) "We propose Polynesia, a hardware–software co-designed system for in-memory HTAP [hybrid transactional/anal... » read more

DNN-Opt, A Novel Deep Neural Network (DNN) Based Black-Box Optimization Framework For Analog Sizing


This technical paper titled "DNN-Opt: An RL Inspired Optimization for Analog Circuit Sizing using Deep Neural Networks" is co-authored from researchers at The University of Texas at Austin, Intel, University of Glasgow. The paper was a best paper candidate at DAC 2021. "In this paper, we present DNN-Opt, a novel Deep Neural Network (DNN) based black-box optimization framework for analog sizi... » read more

← Older posts Newer posts →