Considerations for Neuromorphic Supercomputing in Semiconducting and Superconducting Optoelectronic Hardware


Abstract: "Any large-scale spiking neuromorphic system striving for complexity at the level of the human brain and beyond will need to be co-optimized for communication and computation. Such reasoning leads to the proposal for optoelectronic neuromorphic platforms that leverage the complementary properties of optics and electronics. Starting from the conjecture that future large-scale neurom... » read more

All-inorganic perovskite quantum dot light-emitting memories


Abstract "Field-induced ionic motions in all-inorganic CsPbBr3 perovskite quantum dots (QDs) strongly dictate not only their electro-optical characteristics but also the ultimate optoelectronic device performance. Here, we show that the functionality of a single Ag/CsPbBr3/ITO device can be actively switched on a sub-millisecond scale from a resistive random-access memory (RRAM) to a light-e... » read more

Quantum well interband semiconductor lasers highly tolerant to dislocations


Abstract "III-V semiconductor lasers integrated on Si-based photonic platforms are eagerly awaited by the industry for mass-scale applications, from interconnect to on-chip sensing. The current understanding is that only quantum dot lasers can reasonably operate at the high dislocation densities generated by the III-V-on-Si heteroepitaxy, which induces high non-radiative carrier recombination ... » read more

High-Voltage, High-Current Electrical Switching Discharge Synthesis of ZnO Nanorods: A New Method toward Rapid and Highly Tunable Synthesis of Oxide Semiconductors in Open Air and Water for Optoelectronic Applications


Abstract: "A novel method of oxide semiconductor nanoparticle synthesis is proposed based on high-voltage, high-current electrical switching discharge (HVHC-ESD). Through a subsecond discharge in the HVHC-ESD method, we successfully synthesized zinc oxide (ZnO) nanorods. Crystallography and optical and electrical analyses approve the high crystal-quality and outstanding optoelectronic charac... » read more

Sputtered transparent electrodes for optoelectronic devices: Induced damage and mitigation strategies


Abstract: Summary "Transparent electrodes and metal contacts deposited by magnetron sputtering find applications in numerous state-of-the-art optoelectronic devices, such as solar cells and light-emitting diodes. However, the deposition of such thin films may damage underlying sensitive device layers due to plasma emission and particle impact. Inserting a buffer layer to shield against such da... » read more

Substitutional synthesis of sub-nanometer InGaN/GaN quantum wells with high indium content


Abstract "InGaN/GaN quantum wells (QWs) with sub-nanometer thickness can be employed in short-period superlattices for bandgap engineering of efficient optoelectronic devices, as well as for exploiting topological insulator behavior in III-nitride semiconductors. However, it had been argued that the highest indium content in such ultra-thin QWs is kinetically limited to a maximum of 33%, narro... » read more

Roadmap on organic–inorganic hybrid perovskite semiconductors and devices


ABSTRACT Metal halide perovskites are the first solution processed semiconductors that can compete in their functionality with conventional semiconductors, such as silicon. Over the past several years, perovskite semiconductors have reported breakthroughs in various optoelectronic devices, such as solar cells, photodetectors, light emitting and memory devices, and so on. Until now, perovskit... » read more

MXene-GaN van der Waals metal-semiconductor junctions for high performance multiple quantum well photodetectors


Abstract: "A MXene-GaN-MXene based multiple quantum well photodetector was prepared on patterned sapphire substrate by facile drop casting. The use of MXene electrodes improves the responsivity and reduces dark current, compared with traditional Metal-Semiconductor-Metal (MSM) photodetectors using Cr/Au electrodes. Dark current of the device using MXene-GaN van der Waals junctions is reduced b... » read more

Newer posts →