All-Silicon Quantum Light Source Based On A Single Atomic Emissive Center


A technical paper titled “All-silicon quantum light source by embedding an atomic emissive center in a nanophotonic cavity” was published by researchers at University of California Berkeley and Lawrence Berkeley National Laboratory. Abstract: "Silicon is the most scalable optoelectronic material but has suffered from its inability to generate directly and efficiently classical or quantum ... » read more

Improving Performance Of Artificial Intelligence And Quantum Computers


A technical paper titled “Gate-tunable superconducting diode effect in a three-terminal Josephson device” was published by researchers at University of Minnesota, University of California Santa Barbara, and Stanford University. Abstract: "The phenomenon of non-reciprocal critical current in a Josephson device, termed the Josephson diode effect, has garnered much recent interest. Realizati... » read more

Metallic Behaviour of Semiconducting Colloidal Quantum Dots (RIKEN, Others)


A technical paper titled “Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots” was published by researchers at RIKEN Center for Emergent Matter Science (CEMS), Tokyo Institute of Technology, RIKEN SPring-8 Center, The University of Tokyo, and Tokyo University of Agriculture and Technology. Abstract "Semiconducting colloidal quantum dots ... » read more

End-To-End System Architecture For Quantum RAM (Yale, AWS, Caltech)


A technical paper titled “Systems Architecture for Quantum Random Access Memory” was published by researchers at Yale University, AWS Center for Quantum Computing, and California Institute of Technology. Abstract: "Operating on the principles of quantum mechanics, quantum algorithms hold the promise for solving problems that are beyond the reach of the best-available classical algorithms.... » read more

An Evaluation of Quantum Algorithms On Classical Hardware Using The CuQuantum Framework


A technical paper titled “Simulating Noisy Quantum Circuits for Cryptographic Algorithms” was published by researchers at Virginia Tech. Abstract: "The emergence of noisy intermediate-scale quantum (NISQ) computers has important consequences for cryptographic algorithms. It is theoretically well-established that key algorithms used in cybersecurity are vulnerable to quantum computers due ... » read more

Framework To Compile Quantum Programs Onto Chiplets (UCSB, Cisco)


A technical paper titled "Compilation for Quantum Computing on Chiplets" was published by researchers at UC Santa Barbara and Cisco Quantum Lab. Abstract: "Chiplet architecture is an emerging architecture for quantum computing that could significantly increase qubit resources with its great scalability and modularity. However, as the computing scale increases, communication between qubits w... » read more

Quantum: Loophole-​Free Bell Test with Superconducting Circuits (ETH Zurich)


A new technical paper titled "Loophole-free Bell inequality violation with superconducting circuits" was published by a group of researchers led by ETH Zurich. Abstract (partial) "Here we demonstrate a loophole-free violation of Bell’s inequality with superconducting circuits, which are a prime contender for realizing quantum computing technology. To evaluate a Clauser–Horne–Shimony... » read more

Toolbox For Designing Heterogeneous Quantum Systems


A new technical paper titled "Microarchitectures for Heterogeneous Superconducting Quantum Computers" was published by researcher at: Pacific Northwest National Laboratory, Princeton University, University of Chicago, Rutgers University, MIT, Brookhaven National Laboratory, and Infleqtion. Abstract: "Noisy Intermediate-Scale Quantum Computing (NISQ) has dominated headlines in recent years, ... » read more

Quantum Light Source Fully Integrated On A Chip


A new technical paper titled "Quantum light source goes fully on-chip, bringing scalability to the quantum cloud" was published by researchers at Leibniz University Hannover, University of Twente and QuiX Quantum. Abstract: "Integrated photonics has recently become a leading platform for the realization and processing of optical entangled quantum states in compact, robust and scalable chip ... » read more

Using Photonic Band Gap in Triangular SiC Structures for Efficient Quantum Nanophotonic HW


A new technical paper titled "Utilizing photonic band gap in triangular silicon carbide structures for efficient quantum nanophotonic hardware" was published by researchers at UC Davis. Abstract: "Silicon carbide is among the leading quantum information material platforms due to the long spin coherence and single-photon emitting properties of its color center defects. Applications of silico... » read more

← Older posts Newer posts →