The Next Advanced Packages


Packaging houses are readying their next-generation advanced IC packages, paving the way toward new and innovative system-level chip designs. These packages include new versions of 2.5D/3D technologies, chiplets, fan-out and even wafer-scale packaging. A given package type may include several variations. For example, vendors are developing new fan-out packages using wafers and panels. One is... » read more

Improving Reliability For GaN And SiC


Suppliers of gallium nitride (GaN) and silicon carbide (SiC) power devices are rolling out the next wave of products with some new and impressive specs. But before these devices are incorporated in systems, they must prove to be reliable. As with previous products, suppliers are quick to point out that the new devices are reliable, although there are some issues that can occasionally surface... » read more

Challenges For Compute-In-Memory Accelerators


A compute-in-memory (CIM) accelerator does not simply replace conventional logic. It's a lot more complicated than that. Regardless of the memory technology, the accelerator redefines the latency and energy consumption characteristics of the system as a whole. When the accelerator is built from noisy, low-precision computational elements, the situation becomes even more complex. Tzu-Hsian... » read more

High-Speed Signaling Drill-Down


Chip interconnect standards have received a lot of attention lately, with parallel versions proliferating for chiplets and serial versions moving to higher speeds. The lowliest characteristic of these interconnect schemes is the physical signaling format. Having been static at NRZ (non-return-to-zero) for decades, change is underway. “Multiple approaches are likely to emerge,” said Brig ... » read more

Simplifying And Speeding Up Verification


Semiconductor Engineering sat down to discuss what's ahead for verification with Daniel Schostak, Arm fellow and verification architect; Ty Garibay, vice president of hardware engineering at Mythic; Balachandran Rajendran, CTO at Dell EMC; Saad Godil, director of applied deep learning research at Nvidia; Nasr Ullah, senior director of performance architecture at SiFive. What follows are excerpt... » read more

Interconnect Challenges Grow, Tools Lag


Interconnects are becoming much more problematic as devices shrink and the amount of data being moved around a system continues to rise. This limitation has shown up several times in the past, and it's happening again today. But when the interconnect becomes an issue, it cannot be solved in the same way issues are solved for other aspects of a chip. Typically it results in disruption in how ... » read more

Aging Problems At 5nm And Below


The mechanisms that cause aging in semiconductors have been known for a long time, but the concept did not concern most people because the expected lifetime of parts was far longer than their intended deployment in the field. In a short period of time, all of that has changed. As device geometries have become smaller, the issue has become more significant. At 5nm, it becomes an essential par... » read more

ESD Requirements Are Changing


Standards for specifying a chip’s ability to withstand electrostatic discharge (ESD) are changing – in some cases, getting tougher, and in others, easing up. ESD protection has been on a path from a one-size-fits-all approach to one where a signal’s usage helps to determine what kind of protection it should get. Protecting chips from ESD damage has been a longstanding part of IC design... » read more

New Approaches For Dealing With Thermal Problems


New thermal monitoring, simulation and analysis techniques are beginning to coalesce in chips developed at leading-edge nodes and in advanced packages in order to keep those devices running at optimal temperatures. This is particularly important in applications such as AI, automotive, data centers and 5G. Heat can kill a chip, but it also can cause more subtle effects such as premature aging... » read more

Fundamental Changes In Economics Of Chip Security


Protecting chips from cyberattacks is becoming more difficult, more expensive and much more resource-intensive, but it also is becoming increasingly necessary as some of those chips end up in mission-critical servers and in safety-critical applications such as automotive. Security has been on the semiconductor industry's radar for at least the past several years, despite spotty progress and ... » read more

← Older posts Newer posts →