Home
TECHNICAL PAPERS

Characterizing Defects Inside Hexagonal Boron Nitride (KAIST, NYU, et al.)

popularity

A new technical paper titled “Characterizing Defects Inside Hexagonal Boron Nitride Using Random Telegraph Signals in van der Waals 2D Transistors” was published by researchers at KAIST, NYU, Brookhaven National Laboratory, and National Institute for Materials Science.

Abstract:

“Single-crystal hexagonal boron nitride (hBN) is used extensively in many two-dimensional electronic and quantum devices, where defects significantly impact performance. Therefore, characterizing and engineering hBN defects are crucial for advancing these technologies. Here, we examine the capture and emission dynamics of defects in hBN by utilizing low-frequency noise (LFN) spectroscopy in hBN-encapsulated and graphene-contacted MoS2 field-effect transistors (FETs). The low disorder of this heterostructure allows the detection of random telegraph signals (RTS) in large device dimensions of 100 μm2 at cryogenic temperatures. Analysis of gate bias- and temperature-dependent LFN data indicates that RTS originates from a single trap species within hBN. By performing multispace density functional theory (MS-DFT) calculations on a gated defective hBN/MoS2 heterostructure model, we assign substitutional carbon atoms in boron sites as the atomistic origin of RTS. This study demonstrates the utility of LFN spectroscopy combined with MS-DFT analysis on a low-disorder all-vdW FET as a powerful means for characterizing the atomistic defects in single-crystal hBN.”

Find the technical paper here. Published September 2024.

Zhujun Huang, Ryong-Gyu Lee, Edoardo Cuniberto, Jiyoon Song, Jeongwon Lee, Abdullah Alharbi, Kim Kisslinger, Takashi Taniguchi, Kenji Watanabe, Yong-Hoon Kim, and Davood Shahrjerdi
ACS Nano 2024 18 (42), 28700-28711
DOI: 10.1021/acsnano.4c06929



Leave a Reply


(Note: This name will be displayed publicly)