Electrically connected spin-torque oscillators array for 2.4 GHz WiFi band transmission and energy harvesting

Harvest WiFi signals to power small electronics


Researchers at the National University of Singapore and Tohoku University developed a device that uses spin-torque oscillators (STOs) to harvest energy from 2.4GHz Wi-Fi signals and wirelessly power an LED without need for a battery.


Technical Paper Link:


“The mutual synchronization of spin-torque oscillators (STOs) is critical for communication, energy harvesting and neuromorphic applications. Short range magnetic coupling-based synchronization has spatial restrictions (few µm), whereas the long-range electrical synchronization using vortex STOs has limited frequency responses in hundreds MHz (<500 MHz), restricting them for on-chip GHz-range applications. Here, we demonstrate electrical synchronization of four non-vortex uniformly-magnetized STOs using a single common current source in both parallel and series configurations at 2.4 GHz band, resolving the frequency-area quandary for designing STO based on-chip communication systems. Under injection locking, synchronized STOs demonstrate an excellent time-domain stability and substantially improved phase noise performance. By integrating the electrically connected eight STOs, we demonstrate the battery-free energy-harvesting system by utilizing the wireless radio-frequency energy to power electronic devices such as LEDs. Our results highlight the significance of electrical topology (series vs. parallel) while designing an on-chip STOs system.”

Sharma, R., Mishra, R., Ngo, T. et al. Electrically connected spin-torque oscillators array for 2.4 GHz WiFi band transmission and energy harvesting. Nat Commun 12, 2924 (2021). https://doi.org/10.1038/s41467-021-23181-1.


Leave a Reply

(Note: This name will be displayed publicly)