A unified system integrating an efficient object detector and an environmental condition classifier may be a reliable enhancement to ADAS.
Abstract:
“A unified system integrating a compact object detector and a surrounding environmental condition classifier for enhancing the robustness of object detection scheme in advanced driver assistance systems (ADAS) is proposed in this paper. ADAS are invented to improve traffic safety and effectiveness in autonomous driving systems where object detection plays an extremely important role. However, modern object detectors integrated into ADAS are still unstable due to high latency and the variation of the environmental contexts in the deployment phase. Our system is proposed to address the aforementioned problems. The proposed system includes two main components: (1) a compact one-stage object detector which is expected to be able to perform at a comparable accuracy compared to state-of-the-art object detectors, and (2) an environmental condition detector that helps to send a warning signal to the cloud in case the self-driving car needs human actions due to the significance of the situation. The empirical results prove the reliability and the scalability of the proposed system to realistic scenarios.”
View this technical paper here. Published 08/2021.
Tran, Le-Anh & Do, Truong-Dong & Park, Dong-Chul & Le, My-Ha. (2021). Enhancement of Robustness in Object Detection Module for Advanced Driver Assistance Systems.
Disaggregation and the wind-down of Moore’s Law have changed everything.
Different interconnect standards and packaging options being readied for mass chiplet adoption.
Continued expansion in new and existing markets points to massive and sustained growth.
Aging equipment and rising demand are pushing up prices and slowing production.
Experts at the Table: Designing for context, and geopolitical impacts on a global supply chain.
Interest in this particular ISA is expanding, but the growth of other open-source hardware is less certain.
Nanosheets are likeliest option throughout this decade, with CFETs and other exotic structures possible after that.
Hybrid bonding opens up whole new level of performance in packaging, but it’s not the only improvement.
Why this is becoming a bigger issue, and what can be done to mitigate the effects.
Some 300mm tools are converted to 200mm; equipment prices and chip manufacturing costs are rising.
From low resistance vias to buried power rails, it takes multiple strategies to usher in 2nm chips.
Manufacturing 3D structures will require atomic-level control of what’s removed and what stays on a wafer.
Disaggregation and the wind-down of Moore’s Law have changed everything.
Leave a Reply