Flexible In-Field Test of a CAN Controller


A technical paper titled “A Systematic Method to Generate Effective STLs for the In-Field Test of CAN Bus Controllers” was published by Delft University of Technology, Cadence, and Politecnico di Torino.

“In order to match the strict reliability requirements mandated by regulations and standards adopted in the automotive sector, as well as other domains where safety is a major concern, the in-field testing of the most critical devices, including microcontrollers and systems on chip, is a crucial task. Since the controller area network (CAN) bus is widely used in the automotive domain, the corresponding controller ubiquitously appears in all these devices. This paper presents a generic and systematic methodology to develop an effective in-field test procedure for CAN controllers based on a functional approach (i.e., on the adoption of self-test libraries). The method can be customized to match the requirements coming from different scenarios, and allows the test engineer to maximize the achieved fault coverage in terms of structural faults in the different cases. The experimental results we gathered on a representative CAN controller model show that, given two typical testing scenarios, we are able to detect 84.28% and 87.62% of stuck-at faults, respectively, hence demonstrating the effectiveness of the proposed approach.”

Find the technical paper here. Published August 2022.

da Silva, F.A.; Cantoro, R.; Hamdioui, S.; Sartoni, S.; Sauer, C.; Sonza Reorda, M. A Systematic Method to Generate Effective STLs for the In-Field Test of CAN Bus Controllers. Electronics 2022, 11, 2481. https://doi.org/10.3390/electronics11162481.

Leave a Reply

(Note: This name will be displayed publicly)