中文 English

Research Bits: April 5


Creating qubits in bulk Researchers from Intel and QuTech, an institute of the Delft University of Technology and the Netherlands Organisation for Applied Scientific Research (TNO), built a qubit using standard semiconductor manufacturing facilities. The qubit is based on the spin of single electrons that are captured in a silicon nanoscale device, which resembles conventional transistors. ... » read more

Technical Paper Round-Up: April 5


Neuromorphic chips, transistor defect detection, quantum, pellicles, BEV mobile charging, copper wire bonding, LrWPAN, batteries and superconductivity top the past week's technical papers. They also point to a rising level of government investment, and collaborations between schools that historically haven't worked closely together, including one that involves schools on different continents. ... » read more

Quantum logic with spin qubits crossing the surface code threshold


New research paper from QuTech, Delft University of Technology. Abstract "High-fidelity control of quantum bits is paramount for the reliable execution of quantum algorithms and for achieving fault tolerance—the ability to correct errors faster than they occur. The central requirement for fault tolerance is expressed in terms of an error threshold. Whereas the actual threshold depends o... » read more

Qubits made by advanced semiconductor manufacturing


Abstract: "Full-scale quantum computers require the integration of millions of qubits, and the potential of using industrial semiconductor manufacturing to meet this need has driven the development of quantum computing in silicon quantum dots. However, fabrication has so far relied on electron-beam lithography and, with a few exceptions, conventional lift-off processes that suffer from low yie... » read more

Power/Performance Bits: Dec. 28


Shrinking LEDs Researchers from King Abdullah University of Science and Technology (KAUST) are working to make LEDs smaller. Micrometer-scale light-emitting diodes (μLEDs) could be an ideal building block for future microLED displays, but devices based on nitride-based alloys used to achieve a broad color range become poor emitters of light when shrunk to micrometer scales. “The main ... » read more

Manufacturing Bits: Nov. 30


Quantum chemistry QunaSys has launched a technology that enables researchers to perform chemical calculations using quantum computers in the cloud. The company has announced the launch of the cloud version of Qamuy, which is supported by Amazon Web Services Japan. Qamuy is a software technology that allows researchers to perform chemical calculations using quantum computers. Developers c... » read more

Intermittent Undefined State Fault in RRAMs


Abstract: " Industry is prototyping and commercializing Resistive Random Access Memories (RRAMs). Unfortunately, RRAM devices introduce new defects and faults. Hence, high-quality test solutions are urgently needed. Based on silicon measurements, this paper identifies a new RRAM unique fault, the Intermittent Undefined State Fault (IUSF); this fault causes the RRAM device to intermittently c... » read more

Thinner Channels With 2D Semiconductors


Moving to future nodes will require more than just smaller features. At 3/2nm and beyond, new materials are likely to be added, but which ones and exactly when will depend upon an explosion of material science research underway at universities and companies around the globe. With field-effect transistors, a voltage applied to the gate creates an electric field in the channel, bending the ban... » read more

Chasing After Carbon Nanotube FETs


Carbon nanotube transistors are finally making progress for potential use in advanced logic chips after nearly a quarter century in R&D. The question now is whether they will move out of the lab and into the fab. Several government agencies, companies, foundries, and universities over the years have been developing, and are now making advancements with carbon nanotube field-effect transi... » read more

Power/Performance Bits: June 2


Neuromorphic memristor Researchers at the University of Massachusetts Amherst used protein nanowires to create neuromorphic memristors capable of running at extremely low voltage. A challenge to neuromorphic computing is mimicking the low voltage at which the brain operates: it sends signals between neurons at around 80 millivolts. Jun Yao, an electrical and computer engineering researcher at ... » read more

← Older posts