An in-depth look at the standard that defines automotive semiconductors.
Written by an ISO 26262 working group member who contributed to the new ISO 26262:2018 Part 11, this paper dispels myths about ISO 26262 certification and seeks to enhance the reader’s knowledge regarding all aspects of the ISO 26262 standard.
Provides information on employee training and certification courses, functional safety consulting services, and accredited certification by exida, TÜV Sud, ResilTech, SGS TÜV Saar, kVA and others.
To read more, click here.
The industry is gaining ground in understanding how aging affects reliability, but more variables make it harder to fix.
Tools become more specific for Si/SiGe stacks, 3D NAND, and bonded wafer pairs.
Thinner photoresist layers, line roughness, and stochastic defects add new problems for the angstrom generation of chips.
Key pivot and innovation points in semiconductor manufacturing.
The verification of a processor is a lot more complex than a comparably-sized ASIC, and RISC-V processors take this to another layer of complexity.
Less precision equals lower power, but standards are required to make this work.
Open-source processor cores are beginning to show up in heterogeneous SoCs and packages.
New applications require a deep understanding of the tradeoffs for different types of DRAM.
Open source by itself doesn’t guarantee security. It still comes down to the fundamentals of design.
How customization, complexity, and geopolitical tensions are upending the global status quo.
127 startups raise $2.6B; data center connectivity, quantum computing, and batteries draw big funding.
The industry is gaining ground in understanding how aging affects reliability, but more variables make it harder to fix.
Ensuring that your product contains the best RISC-V processor core is not an easy decision, and current tools are not up to the task.
Leave a Reply