Fabrication of flexible thin-film transistors (TFTs) using PLO.
Abstract
“Fabricating flexible electronics on plastic is often limited by the poor dimensional stability of polymer substrates. To mitigate, glass carriers are used during fabrication, but removing the plastic substrate from a carrier without damaging the electronics remains challenging. Here we utilize a large-area, high-throughput photonic lift-off (PLO) process to rapidly separate polymer films from rigid carriers. PLO uses a 150 µs pulse of broadband light from flashlamps to lift-off functional thin films from glass carrier substrates coated with a light absorber layer (LAL). Modeling indicates that the polymer/LAL interface reaches above 800 °C during PLO, but the top surface of the PI remains below 120 °C. An array of indium zinc oxide (IZO) thin-film transistors (TFTs) was fabricated on a polyimide substrate and photonically lifted off from the glass carrier. The TFT mobility was unchanged by PLO. The flexible TFTs were mechanically robust, with no reduction in mobility while flexed.”
Find the technical paper link here (open access).
Weidling, A.M., Turkani, V.S., Akhavan, V. et al. Large-area photonic lift-off process for flexible thin-film transistors. npj Flex Electron 6, 14 (2022). https://doi.org/10.1038/s41528-022-00145-z.
Visit Semiconductor Engineering’s Technical Paper repository here and discover many more chip industry academic papers.
Suppliers are investing new 300mm capacity, but it’s probably not enough. And despite burgeoning 200mm demand, only Okmetic and new players in China are adding capacity.
Different interconnect standards and packaging options being readied for mass chiplet adoption.
Continued expansion in new and existing markets points to massive and sustained growth.
Experts at the Table: Designing for context, and geopolitical impacts on a global supply chain.
Funding rolls in for photonics and batteries; 88 startups raise $1.3B.
Interest in this particular ISA is expanding, but the growth of other open-source hardware is less certain.
Nanosheets are likeliest option throughout this decade, with CFETs and other exotic structures possible after that.
Hybrid bonding opens up whole new level of performance in packaging, but it’s not the only improvement.
Why this is becoming a bigger issue, and what can be done to mitigate the effects.
Suppliers are investing new 300mm capacity, but it’s probably not enough. And despite burgeoning 200mm demand, only Okmetic and new players in China are adding capacity.
From low resistance vias to buried power rails, it takes multiple strategies to usher in 2nm chips.
Manufacturing 3D structures will require atomic-level control of what’s removed and what stays on a wafer.
Disaggregation and the wind-down of Moore’s Law have changed everything.
Leave a Reply