Striking A Balance On Efficiency, Performance, And Cost


Experts at the Table: Semiconductor Engineering sat down to discuss power-related issues such as voltage droop, application-specific processing elements, the impact of physical effects in advanced packaging, and the benefits of backside power delivery, with Hans Yeager, senior principal engineer, architecture, at Tenstorrent; Joe Davis, senior director for Calibre interfaces and EM/IR product m... » read more

New AI Processors Architectures Balance Speed With Efficiency


Leading AI systems designs are migrating away from building the fastest AI processor possible, adopting a more balanced approach that involves highly specialized, heterogeneous compute elements, faster data movement, and significantly lower power. Part of this shift revolves around the adoption of chiplets in 2.5D/3.5D packages, which enable greater customization for different workloads and ... » read more

3.5D: The Great Compromise


The semiconductor industry is converging on 3.5D as the next best option in advanced packaging, a hybrid approach that includes stacking logic chiplets and bonding them separately to a substrate shared by other components. This assembly model satisfies the need for big increases in performance while sidestepping some of the thorniest issues in heterogeneous integration. It establishes a midd... » read more

Where Power Savings Really Count


Experts at the Table: Semiconductor Engineering sat down to discuss why and where improvements in architectures and data movement will have the biggest impact, with Hans Yeager, senior principal engineer, architecture, at Tenstorrent; Joe Davis, senior director for Calibre interfaces and EM/IR product management at Siemens EDA; Mo Faisal, CEO of Movellus; Trey Roessig, CTO and senior vice presi... » read more

Floor-Planning Evolves Into The Chiplet Era


3D-ICs and heterogeneous chiplets will require significant changes in physical layout tools, where the placement of chiplets and routing of signals can have a big impact on overall system performance and reliability. EDA vendors are well aware of the issues and working on solutions. Top on the list of challenges for 3D-ICs is thermal dissipation. Logic typically generates the most heat, and ... » read more

Heat-Related Issues Impact Reliability In Advanced IC Designs


Heat is becoming a much bigger problem in advanced-node chips and packages, causing critical electrons to leak out of DRAM, timing and reliability issues in 3D-ICs, and accelerated aging that are unique to different workloads. All types of circuitry are vulnerable to thermal effects. It can slow the movement of the electrons through wires, cause electromigration that shortens the lifespan of... » read more

IC Power Optimization Required, But More Difficult To Achieve


Power optimization is playing an increasingly vital role in chip and chip and system designs, but it's also becoming much harder to achieve as transistor density and system complexity continue to grow. This is especially evident with advanced packages, chiplets, and high-performance chips, all of which are becoming more common in complex designs. Inside data centers, racks of servers are str... » read more

Intel Vs. Samsung Vs. TSMC


The three leading-edge foundries — Intel, Samsung, and TSMC — have started filling in some key pieces in their roadmaps, adding aggressive delivery dates for future generations of chip technology and setting the stage for significant improvements in performance with faster delivery time for custom designs. Unlike in the past, when a single industry roadmap dictated how to get to the next... » read more

Powering Next-Generation Insightful Design


The Ansys team is gearing up for an exciting time at DAC this week, where we’ll be sharing a whole new way of visualizing physical phenomena in 3D-IC designs, powered by NVIDIA Omniverse, a platform for developing OpenUSD and RTX-enabled 3D applications and workflows. Please attend our Exhibitor Forum session so we can show you the valuable design insights you can gain by interactively viewin... » read more

Multi-Die Design Pushes Complexity To The Max


Multi-die/multi-chiplet design has thrown a wrench into the ability to manage design complexity, driving up costs per transistor, straining market windows, and sending the entire chip industry scrambling for new tools and methodologies. For multiple decades, the entire semiconductor design ecosystem — from EDA and IP providers to foundries and equipment makers — has evolved with the assu... » read more

← Older posts Newer posts →