What’s Missing In 2.5D EDA Tools


Gaps in EDA tool chains for 2.5D designs are limiting the adoption of this advanced packaging approach, which so far has been largely confined to high-performance computing. But as the rest of the chip industry begins migrating toward advanced packaging and chiplets, the EDA industry is starting to change direction. There are learning periods with all new technologies, and 2.5D advanced pack... » read more

3D-IC Intensifies Demand For Multi-Physics Simulation


The introduction of full 3D-ICs will require a simultaneous analysis of various physical effects under different workloads, a step-function change that will add complexity at every step of the design flow, expand and alter job responsibilities, and bring together the analog and digital design worlds in unprecedented ways. 3D-ICs will be the highest-performance advanced packaging option, in s... » read more

How Multiphysics Simulation Enables 3D-IC Implementation At The Speed Of Light


Electronic designers need greater integration densities and faster data transfer rates to meet the increased performance requirements of technologies like 5G/6G, autonomous driving, and artificial intelligence. The semiconductor industry is shifting toward 3D-IC design to keep up with the ever-growing demand for high-performance and power-efficient devices that has outpaced the capabilities o... » read more

Distributed Batteries Within a Heterogeneous 3D IC


A new technical paper titled "On-Chip Batteries as Distributed Energy Sources in Heterogeneous 2.5D/3D Integrated Circuits" was published by researchers at University of Florida (Gainesville) and Brookhaven National Lab. Abstract "Energy efficiency in digital systems faces challenges due to the constraints imposed by small-scale transistors. Moreover, the growing demand for portable consum... » read more

Intel, And Others, Inside


Intel this week made a strong case for how it will regain global process technology leadership, unfurling an aggressive technology and business roadmap that includes everything from several more process node shrinks that ultimately could scale into the single-digit angstrom range to a broad shift in how it approaches the market. Both will be essential for processing the huge amount of data for ... » read more

Re-architecting Hardware For Energy


A lot of effort has gone into the power optimization of a system based on the RTL created, but that represents a small fraction of the possible power and energy that could be saved. The industry's desire to move to denser systems is being constrained by heat, so there is an increasing focus on re-architecting systems to reduce the energy consumed per useful function performed. Making signifi... » read more

Why There Are Still No Commercial 3D-ICs


Building chips in three dimensions is drawing increased attention and investment, but so far there have been no announcements about commercial 3D-IC chips. There are some fundamental problems that must be overcome and new tools that need to be developed. In contrast, the semiconductor industry is becoming fairly comfortable with 2.5D integration, where individual dies are assembled on some k... » read more

Many More Hurdles In Heterogeneous Integration


Advanced packaging options continue to stack up in the pursuit of “More than Moore” and higher levels of integration. It has become a place where many high-density interconnects converge, and where many new and familiar problems need to be addressed. The industry’s first foray into fine-pitch multi-die packaging utilized silicon interposers with through-silicon vias (TSVs) to deliver s... » read more

Navigating Heat In Advanced Packaging


The integration of multiple heterogeneous dies in a package is pivotal for extending Moore’s Law and enhancing performance, power efficiency, and functionality, but it also is raising significant issues over how to manage the thermal load. Advanced packaging provides a way to pack more features and functions into a device, increasingly by stacking various components vertically rather than ... » read more

Chip Industry Silos Are Crimping Advances


Change is never easy, but it is more difficult when it involves organizational restructuring. The pace of such restructuring has been increasing over the past decade, and often it is more difficult to incorporate than technological advancements. This is due to the siloed nature of the semiconductor industry, both within the industry itself, and its relationship to surrounding industries. Inc... » read more

← Older posts Newer posts →