IP To Meet 2.5D Requirements


The semiconductor industry is still in the early stages of evolution in the realm of 2.5D, but when these devices do come out, the IP used on them will have to be brand new, according to Javier DeLaCruz, senior director of engineering at eSilicon. “The IP causes the biggest risk that you’re going to have in this implementation,” he said. “Everything else in here for making those ASIC... » read more

Powerful Memories


Memory consumes more of the surface area of a die than any other component. So what changes have happened over the past few years to reduce the power consumption of memories, and where are the big opportunities for saving power? Let's take a closer look. A Growing Concern One of the key drivers for SoCs is the desire to reduce product costs, reduce form factors, reduce power, increase perfo... » read more

Executive Insight: CH Wu


Semiconductor Engineering sat down with CH Wu, president and CEO of Advantest Taiwan, to talk about business, politics, and his philosophy on what really motivates people. What follows are excerpts of that conversation. SE: Tell us a little about who you are and your background. Wu: I graduated from college with a degree in electrical engineering and started at Philips Electric, then moved ... » read more

Improving Yield Of 2.5D Designs


While progress is being made on the packaging side of 2.5D design, more needs to be resolved when it comes to improving yields. Proponents of 2.5D present compelling benefits. Arif Rahman, a product architect at Altera, noted that the industry trend of silicon convergence is leading to multiple technologies being integrated into single-chip solutions. “2.5D/3D integration has multiple adva... » read more

Time To Revisit 2.5D And 3D


Chipmakers are reaching various and challenging inflection points. In logic, many IC makers face a daunting transition from planar transistors at 20nm to finFETs at 14nm. And on another front, the industry is nearing the memory bandwidth wall. So perhaps it’s time to look at new alternatives. In fact, chipmakers are taking a hard look, or re-examining, one alternative—stacked 2.5D/3D chi... » read more

A High-Level ‘How To’ Guide For Effective Chip-Package Thermal Co-Design


By John Parry and Byron Blackmore Concurrent design of a chip and its packaging environment is becoming more important than ever for several reasons. Designing a large, high power die, e.g. a System-on-Chip (SoC), without considering how to get the heat out is likely to lead to problems later on, resulting in a sub-optimal packaging solution from cost, size, weight and performance perspective... » read more

How Much Will That Chip Cost?


From the most advanced process nodes to the trailing edge of design there is talk about the skyrocketing cost of developing increasingly complex SoCs. At 16/14nm it’s a combination of multi-patterning, multiple power domains and factoring in physical and proximity effects. At older nodes, it’s the shift to more sophisticated versions of the processes and new tools to work within those proce... » read more

Challenges In 3D Resists


3D integration straddles the line between CMOS fabs and packaging and assembly houses. Depending on the structure being fabricated, the most appropriate process might be more “CMOS-like” or more “package-like.” For example, in CMOS fabs lithography means spin-on photoresist, exposed by a high precision stepper. Inherent in this approach is an assumption that the wafer surface is flat... » read more

More Pain In More Places


Pain is nothing new in to the semiconductor industry. In fact, the pain of getting complex designs completed on budget, and finding the bugs in those designs, has been responsible for decades of continuous growth in EDA, IP, test, packaging, and foundries. But going forward there is change afoot in every segment of the flow from architecture to design to layout to verification to manufacturi... » read more

Are Processors Running Out Of Steam?


Check out any smart phone these days and you’ll find some reference to the number of cores in the device. It’s not the number of cores that makes a difference, though—or even the clock speed at which they run. Performance depends on the underlying design for how they’re utilized, how often that happens, how much memory they share, how much interaction there is between the cores, and the... » read more

← Older posts Newer posts →