How Chips Age


Andre Lange, group manager for quality and reliability at Fraunhofer IIS’ Engineering of Adaptive Systems Division, talks about circuit aging, whether current methods of predicting reliability are accurate for chips developed at advanced process nodes, and where additional research is needed. » read more

More Knobs, Fewer Markers


The next big thing in chip design may be really big — the price tag. In the past, when things got smaller, so did the cost per transistor. Now they are getting more expensive to design and manufacture, and the cost per transistor is going up along with the number of transistors per area of die, and in many cases even the size of the die. That's not exactly a winning economic formula, which... » read more

Analog: Avoid Or Embrace?


We live in an analog world, but digital processing has proven quicker, cheaper and easier. Moving digital data around is only possible while the physics of wires can be safely abstracted away enough to provide reliable communications. As soon as a signal passes off-chip, the analog domain reasserts control for modern systems. Each of those transitions requires a data converter. The usage ... » read more

Interdependencies Complicate IC Power Grid Design


Creating the right power grid is a growing problem in leading-edge chips. IP and SoC providers are spending a considerable amount of time defining the architecture of logic libraries in order to enable different power grids to satisfy the needs of different market segments. The end of Dennard scaling is one of the reasons for the increased focus. With the move to smaller nodes, the amount of... » read more

Reliability At 5nm And Below


The best way to figure out how a chip or package will age is to bake it in an oven, heat it in a pressure cooker, and stick it in a freezer. Those are all standard methods to accelerate physical effects and the effects of aging, but it's not clear they will continue working as chips shrink to 5nm and 3nm, or as they are included in multi-die packages. Extending any of those kitchen-like appr... » read more

Multi-Patterning EUV Vs. High-NA EUV


Foundries are finally in production with EUV lithography at 7nm, but chip customers must now decide whether to implement their next designs using EUV-based multiple patterning at 5nm/3nm or wait for a new single-patterning EUV system at 3nm and beyond. This scenario revolves around ASML’s current extreme ultraviolet (EUV) lithography tool (NXE:3400C) versus a completely new EUV system with... » read more

Designing In 4D


The chip design world is no longer flat or static, and increasingly it's no longer standardized. Until 16/14nm, most design engineers viewed the world in two dimensions. Circuits were laid out along x and y axes, and everything was packed in between those two borders. The biggest problems were that nothing printed as neatly as the blueprint suggested, and current leaked out of two-dimension... » read more

IP Management And Development At 5/3nm


The growing complexity of moving to new process nodes is making it much more difficult to create, manage and re-use IP. There are more rules, more data to manage, and more potential interactions as density increases, both in planar implementations and in advanced packaging. And the problems only get worse as designs move to 5nm and 3nm, and as more heterogeneous components such as accelerato... » read more

Making Random Variation Less Random


The economics for random variation are changing, particularly at advanced nodes and in complex packaging schemes. Random variation always will exist in semiconductor manufacturing processes, but much of what is called random has a traceable root cause. The reason it is classified as random is that it is expensive to track down all of the various quirks in a complex manufacturing process or i... » read more

Week In Review: Manufacturing, Test


Chipmakers The semiconductor capital spending race continues to escalate in the leading-edge logic space. Intel and Samsung have separately announced big capital spending plans in 2019. Intel’s latest CapEx budget is $15.5 billion in 2019, while Samsung’s CapEx is slated for $16.204 billion for the year, according to KeyBanc Capital Markets. Now, TSMC is raising the stakes. TSMC this... » read more

← Older posts