Samsung Unveils Scaling, Packaging Roadmaps


Samsung Foundry unveiled an aggressive roadmap that scales down to 4nm, and which includes a fan-out wafer-level packaging technology that bridges chips in the redistribution layer, 18nm FD-SOI, and a new organizational structure that allows the unit much greater autonomy as a commercial enterprise. The moves put [getentity id="22865" e_name="Samsung Foundry"] in direct competition with [get... » read more

The Race To 10/7nm


Amid the ongoing ramp of 16/14nm processes in the market, the industry is now gearing up for the next nodes. In fact, GlobalFoundries, Intel, Samsung and TSMC are racing each other to ship 10nm and/or 7nm technologies. The current iterations of 10nm and 7nm technologies are scaled versions of today’s 16nm/14nm finFETs with traditional copper interconnects, high-k/metal-gate and low-k diele... » read more

High-Stakes Litho Game


The commercial introduction of EUV looks all but assured these days. There is enough history to show it works. Uptime and throughput are improving, and systems are shipping today. The question now is how to measure its success. In the short-term, this is a fairly simple financial exercise for companies like ASML and Zeiss, which have been closely collaborating to get these massive systems ou... » read more

Extending EUV Beyond 3nm


Jan van Schoot, senior principal architect at [getentity id="22935" comment="ASML"], sat down with Semiconductor Engineering to talk about how far EUV can be extended and where it is today. What follows are excerpts of that discussion. SE: High numerical aperture [gettech id="31045" comment="EUV"] has been in the works for some time as a way of extending EUV. How is this technology shaping... » read more

Power Just One Piece Of The Puzzle At 10nm And Below


With dynamic power density and rising leakage power becoming more problematic at each new node, it is more important than ever to look at designs today with power in mind from the very start. As part of this complex picture of electronic design today, every piece in the design flow must tie together for the greatest efficiency and optimization. While this is partly power, there are more... » read more

Power Challenges At 10nm And Below


Current density is becoming much more problematic at 10nm and beyond, increasing the amount of power management that needs to be incorporated into each chip and boosting both design costs and time to market. Current per unit of area has been rising since 90nm, forcing design teams to leverage a number of power-related strategies such as [getkc id="143" kc_name="dynamic voltage and frequency... » read more

Intel Inside The Package


Mark Bohr, senior fellow and director of process architecture and integration at Intel, sat down with Semiconductor Engineering to discuss the growing importance of multi-chip integration in a package, the growing emphasis on heterogeneity, and what to expect at 7nm and 5nm. What follows are excerpts of that interview. SE: There’s a move toward more heterogeneity in designs. Intel clearly ... » read more

Inside Next-Gen Transistors


David Fried, chief technology officer at [getentity id="22210" e_name="Coventor"], sat down with Semiconductor Engineering to discuss the IC industry, China, scaling, transistors and process technology. What follows are excerpts of that conversation. SE: In a recent roundtable discussion you talked about some of the big challenges facing the IC industry. One of your big concerns involves th... » read more

Moore’s Law: A Status Report


Moore's Law has been synonymous with "smaller, faster, cheaper" for the past 52 years, but increasingly it is viewed as just one of a number of options—some competing, some complementary—as the chip industry begins zeroing in on specific market needs. This does not make [getkc id="74" comment="Moore's Law"] any less relevant. The number of companies racing from 16/14nm to 7nm is higher t... » read more

Impact Of Rising SoC Design Costs On Innovation


If there is one truism in the semiconductor market, it is that rising costs will impact unit demand at some point if they continue long enough. The subject of this blog deals not with device ASPs; but rather with rising SoC design costs, and their effect on the number of designs at the advanced nodes. Even though the mechanism governing each set of numbers is different (device ASPs vs. design c... » read more

← Older posts