Sidestepping Moore’s Law


Calvin Cheung, vice president of engineering at ASE, sat down with Semiconductor Engineering to talk about advanced packaging, the challenges involved with the technology, and the implications for Moore’s Law. What follows are excerpts of that conversation. SE: What are some of the big issues with IC packaging today? Cheung: Moore’s Law is slowing down, but transistor scaling will co... » read more

Test Moving Forward And Backward


Test, once considered an important but rather mundane way of separating good chips from the not-so-good and the total rejects, is taking on a whole new life. After decades of largely living in the shadows behind design and advancements in materials and lithography, test has quietly shifted into a much more critical and more public role. But it has taken several rather significant shifts acro... » read more

Meltdown, Spectre And Foreshadow


Ben Levine, senior director of product management for Rambus’ Security Division, talks with Semiconductor Engineering about hardware-specific attacks, why they are so dangerous, and how they work. » read more

CEO Outlook: It Gets Much Harder From Here


Semiconductor Engineering sat down to discuss what's changing across the semiconductor industry with Wally Rhines, CEO emeritus at Mentor, a Siemens Business; Jack Harding, president and CEO of eSilicon; John Kibarian, president and CEO of PDF Solutions; and John Chong, vice president of product and business development for Kionix. What follows are excerpts of that discussion, which was held in... » read more

Chiplet Momentum Builds, Despite Tradeoffs


Chip design is a series of tradeoffs. Some are technical, others are related to cost, competitive features or legal restrictions. But with the nascent 'chiplet' market, many of the established balance points are significantly altered, depending on market segments and ecosystem readiness. Chiplets provide an alternative mechanism for integrating intellectual property (IP) blocks into a semico... » read more

The Growing Uncertainty Of Sign-Off At 7/5nm


Having enough confidence in designs to sign off prior to manufacturing is becoming far more difficult at 7/5nm. It is taking longer due to increasing transistor density, thinner gate oxides, and many more power-related operations that can disrupt signal integrity and impact reliability.  For many years, designers have performed design rule checks as part of physical verification of the desi... » read more

Making AI More Dependable


Ira Leventhal, vice president of Advantest’s new concept product initiative, looks at why AI has taken so long to get going, what role it will play in improving the reliability of all chips, and how to use AI to improve the reliability of AI chips themselves. » read more

Automotive System Design


Burkhard Huhnke, vice president of automotive at Synopsys, looks at how to build and update chips in increasingly sophisticated vehicles, where the problem spots are, and what comes next. » read more

IP Requires System Context At 6/5/3nm


Driven by each successive generation of semiconductor manufacturing technology, complexity has reached dizzying levels. Every part of the design, verification and manufacturing is more complicated and intense the more transistors are able to be packed onto a die. For these reasons, the entire system must be taken into consideration as a whole – not just as individual building blocks as could ... » read more

Focus Shifting From 2.5D To Fan-Outs For Lower Cost


Semiconductor Engineering sat down to discuss advanced packaging with Calvin Cheung, vice president of engineering at ASE; Walter Ng, vice president of business management at UMC; Ajay Lalwani, vice president of global manufacturing operations at eSilicon; Vic Kulkarni, vice president and chief strategist in the office of the CTO at ANSYS; and Tien Shiah, senior manager for memory at Samsung. W... » read more

← Older posts Newer posts →