E-beam Inspection Makes Inroads


E-beam inspection is gaining traction in critical areas in fab production as it is becoming more difficult to find tiny defects with traditional methods at advanced nodes. Applied Materials, ASML/HMI and others are developing new e-beam inspection tools and/or techniques to solve some of the more difficult defect issues in the fab. [gettech id="31057" t_name="E-beam"] inspection is one of tw... » read more

Follow The Moving Money


Semiconductor economics are changing by market, by region, and by product node and packaging type, adding new complexity into decisions about which technology to use for which products and why. Money is the common denominator in all of these decisions, whether it's measured by return on invested capital, quarterly profits, or long-term investments that can include acquisitions, organic growt... » read more

Tech Talk: 7nm Process Variation


Ankur Gupta, director of field applications at ANSYS, discusses process variation and the problems it can cause at 10/7nm and beyond. https://youtu.be/WHNjFr1Da6s » read more

The Next 5 Years Of Chip Technology


Semiconductor Engineering sat down to discuss the future of scaling, the impact of variation, and the introduction of new materials and technologies, with Rick Gottscho, CTO of [getentity id="22820" comment="Lam Research"]; Mark Dougherty, vice president of advanced module engineering at [getentity id="22819" comment="GlobalFoundries"]; David Shortt, technical fellow at [getentity id="22876" co... » read more

What the Experts Think


Coventor recently sponsored an expert panel discussion at IEDM 2017 to discuss how we might advance the semiconductor industry into the next generation of technology. The panel discussed alternative methods to solve fundamental problems of technology scaling, using advances in semiconductor architectures, patterning, metrology, advanced process control, variation reduction, co-optimization and ... » read more

Will Fab Tool Boom Cycle Last?


Fab equipment spending is on pace for a record year in 2017, and it now appears that momentum could continue into 2018. Fab tool vendors found themselves in the midst of an unexpected boom cycle in 2017, thanks to enormous demand for equipment in [getkc id="208" comment="3D NAND"] and, to a lesser degree, [getkc id="93" kc_name="DRAM"]. In the logic/foundry business, however, equipment deman... » read more

Process Window Discovery And Control


With the continued need for shrinking pattern dimensions, semiconductor manufacturers continue to implement more complex patterning techniques, such as advanced multi-patterning, for the 10nm design node and beyond. They also are investing significant development effort in readying EUV lithography for production at the 7/5nm design nodes. Additionally, semiconductor manufacturers’ use of desi... » read more

The Next 5 Years Of Chip Technology


Semiconductor Engineering sat down to discuss the future of scaling, the impact of variation, and the introduction of new materials and technologies, with Rick Gottscho, CTO of [getentity id="22820" comment="Lam Research"]; Mark Dougherty, vice president of advanced module engineering at [getentity id="22819" comment="GlobalFoundries"]; David Shortt, technical fellow at [getentity id="22876" co... » read more

Noise At 7nm And Beyond


The digital and analog worlds always have been very different. Digital engineers see the world in terms of electrons and a well-defined set of numerical values. Their waves are discrete and squared off and their devices are often noisy when they turn on and off. Analog engineers think in terms of quiet, smooth waves, and they are very concerned about anything that can disrupt those waves, such ... » read more

Big Challenges, Changes For Debug


By Ann Steffora Mutschler & Ed Sperling Debugging a chip always has been difficult, but the problem is getting worse at 7nm and 5nm. The number of corner cases is exploding as complexity rises, and some bugs are not even on anyone's radar until well after devices are already in use by end customers. An estimated 39% of verification engineering time is spent on debugging activities the... » read more

← Older posts Newer posts →