AI And Semiconductor In Reciprocity


In today’s rapidly advancing technological era, AI has become a powerful catalyst for innovation and progress. Advanced semiconductor packaging plays a crucial role in supporting AI development, while AI applications create new semiconductor demands and drive the development of semiconductor technologies, with both complementing each other. Semiconductor packaging: The bridge between chip an... » read more

The Rise Of Thin Wafer Processing


The shift from planar SoCs to 3D-ICs and advanced packages requires much thinner wafers in order to improve performance and reduce power, reducing the distance that signals need to travel and the amount of energy needed to drive them. Markets calling for ultrathin wafers are growing. The combined thickness of an HBM module with 12 DRAM dies and a base logic chip is still less than that of a ... » read more

Sustainable AI Systems For Energy-Efficient Computing


By Pushkar Apte, Jim Sexton, and Melissa Grupen-Shemansky The world is abuzz with the new opportunities being created by artificial intelligence (AI), enabled by the availability of unprecedented amounts of data. AI runs on the semiconductor engine, and in turn, creates a rising demand for semiconductor chips. The semiconductor industry is predicted to reach $1 trillion in revenue by 2030 ... » read more

Optimizing Data Movement In SoCs And Advanced Packages


The amount of data that needs to move around a chip is growing exponentially, driven by the rollout of AI and more sensors everywhere. There may be hundreds of IP blocks, more compute elements, and many more wires to contend with. Andy Nightingale, vice president of product management and marketing at Arteris, talks about the demand for low-latency on-chip communication in increasingly complex ... » read more

Chiplets Add New Power Issues


Delivering and managing power are becoming key challenges in the rollout of chiplets, adding significantly to design complexity and forcing chipmakers to weigh tradeoffs that can have a big impact on the performance, reliability, and the overall cost of semiconductors. Power is a concern for every chip and chiplet design, even if the specifics differ based on the application. Systems vendors... » read more

New Innovative Way To Functionally Verify Heterogeneous 2D/3D Package Connectivity


Historically, IC package design has been a relatively simple task which allowed the die bumps to be fanned out to a geometry suitable for connecting to a printed circuit board. The package netlist was often captured by the package designer, typically using Excel to manually assign net names to the desired die bumps and BGA balls to achieve the intended connection. Modern package and interpos... » read more

Challenges Grow For Medical ICs


Demand for medical ICs used inside and outside the body is growing rapidly, but unique manufacturing and functional requirements coupled with low volumes have turned this into a complex and extremely challenging market. Few semiconductor applications demand this level of precision, reliability, and long-term stability. Unlike consumer electronics, where failure might mean a reboot or chip re... » read more

Lines Blurring Between Supercomputing And HPC


Supercomputers and high-performance computers are becoming increasingly difficult to differentiate due to the proliferation of AI, which is driving huge performance increases in commercial and scientific applications and raising similar challenges for both. While the goals of supercomputing and high-performance computing (HPC) have always been similar — blazing fast processing — the mark... » read more

Cracking The Memory Wall


Processor performance continues to improve exponentially, with more processor cores, parallel instructions, and specialized processing elements, but it is far outpacing improvements in bandwidth and memory. That gap, the so-called memory wall, has persisted throughout most of this century, but now it is becoming more pronounced. SRAM scaling is slowing at advanced nodes, which means SRAM takes ... » read more

Back-End Packaging And Test: From Lessons Learned To Future Innovations


The semiconductor industry is a hallmark of technological innovation, evolving rapidly to meet the demands of an increasingly digital world. At its core, semiconductor manufacturing involves two main stages: front-end processes, (wafer fabrication) and back-end processes (packaging and test). Wafer fabrication consists of creating microscopic electronic circuits on a silicon wafer. Packaging an... » read more

← Older posts