Friction Between Single Layer Graphene And An Atomic Force Microscope Tip


A technical paper titled “Dynamically tuning friction at the graphene interface using the field effect” was published by researchers at University of Illinois Urbana-Champaign and University of California Irvine. Abstract: "Dynamically controlling friction in micro- and nanoscale devices is possible using applied electrical bias between contacting surfaces, but this can also induce unwant... » read more

Research Bits: Dec. 13


Electronic-photonic interface for data centers Engineers at Caltech and the University of Southampton integrated an electronic and photonic chip for high-speed communication in data centers. "There are more than 2,700 data centers in the U.S. and more than 8,000 worldwide, with towers of servers stacked on top of each other to manage the load of thousands of terabytes of data going in and o... » read more

Particle Removal From EUV Photomasks


This technical paper titled "AFM-Based Hamaker Constant Determination with Blind Tip Reconstruction" was just published by researchers at ASML, RWTH Aachen University, and AMO GmbH. The research reports a vaccuum AFM-based approach for particle removal from EUV photomasks. Find the technical paper here. Published August 2022. Ku, B., van de Wetering, F., Bolten, J., Stel, B., van de K... » read more

Nanosheet FETs Drive Changes In Metrology And Inspection


In the Moore’s Law world, it has become a truism that smaller nodes lead to larger problems. As fabs turn to nanosheet transistors, it is becoming increasingly challenging to detect line-edge roughness and other defects due to the depths and opacities of these and other multi-layered structures. As a result, metrology is taking even more of a hybrid approach, with some well-known tools moving... » read more

Atomic Force Microscopy Covers The Landscape Of Polymer Characterization


"Materials scientists designing a polymer-based material for a specific application must analyze how and why all these factors come together to impact the final product. Understanding the structure and properties at the microscopic level is critical to a complete understanding of the material. “Everybody wants to make their materials perform better at the macroscale,” says Bede Pittenger, a... » read more

Angstrom-Level Measurements With AFMs


Competition is heating up in the atomic force microscopy (AFM) market, where several vendors are shipping new AFM systems that address various metrology challenges in packaging, semiconductors and other fields. AFM, a small but growing field that has been under the radar, involves a standalone system that provides surface measurements on structures down to the angstrom level. (1 angstrom = 0... » read more

Manufacturing Bits: July 30


Scanning nanopore microscopes ETH Zurich has developed a new microscopy technique that can detect and analyze signals between individual cells in living organisms. The technology, called a force-controlled scanning nanopore microscope, is a new way to look at the behavior of individual cells. So far, researchers have tested the technology on rat brain tissue. It could one day be used to pro... » read more

Manufacturing Bits: Sept. 24


LEGO AFM Students from the University College London (UCL), Tsinghua University and Peking University have built an atomic force microscope (AFM) or nanoscope using toy LEGOs. The AFM, dubbed LEGO2NANO, costs less than $500 to make. In contrast, traditional AFMs cost $100,000 or more. The system was made using LEGOs, Arduino controllers, 3D printed parts and consumer electronics. [captio... » read more