Sidestepping Lithography In Chip Manufacturing


Rising lithography costs, shrinking feature sizes, and the need for an alternative to copper are collectively spurring new interest in area-selective deposition. An extension of atomic layer deposition, ASD seeks to build circuit features from the bottom up, without relying on lithography. Lithography will remain a critical tool for the foreseeable future. But it has long been the most expen... » read more

Building An MRAM Array


MRAM is gaining traction in a variety of designs as a middle-level type of memory, but there are reasons why it took so long to bring this memory to market. A typical magnetoresistive RAM architecture is based on CoFeB magnetic layers, with an MgO tunneling barrier. The reference layer should have zero net magnetization to make sure that it doesn’t influence the orientation of the free lay... » read more

Controlling Variability And Cost At 3nm And Beyond


Richard Gottscho, executive vice president and CTO of Lam Research, sat down with Semiconductor Engineering to talk about how to utilize more data from sensors in manufacturing equipment, the migration to new process nodes, and advancements in ALE and materials that could have a big impact on controlling costs. What follows are excerpts of that conversation. SE: As more sensors are added int... » read more

Where Is Selective Deposition?


For years, the industry has been working on an advanced technology called area-selective deposition for chip production at 5nm and beyond. Area-selective deposition, an advanced self-aligned patterning technique, is still in R&D amid a slew of challenges with the technology. But the more advanced forms of technology are beginning to make some progress, possibly inching closer from the la... » read more

More Lithography/Mask Challenges (Part 2)


Semiconductor Engineering sat down to discuss lithography and photomask technologies with Gregory McIntyre, director of the Advanced Patterning Department at [getentity id="22217" e_name="Imec"]; Harry Levinson, senior fellow and senior director of technology research at [getentity id="22819" comment="GlobalFoundries"]; Regina Freed, managing director of patterning technology at [getentity id="... » read more

The Trouble With MEMS


The advent of the Internet of Things will open up a slew of new opportunities for MEMS-based sensors, but chipmakers are proceeding cautiously. There are a number of reasons for that restraint. Microelectromechanical systems are difficult to design, manufacture and test, which initially fueled optimism in the MEMS ecosystem that this market would command the same kinds of premiums that analo... » read more

Can Nano-Patterning Save Moore’s Law?


For years the academic community has explored a novel technology called selective deposition. Then, more than a year ago, Intel spearheaded an effort to bring the technology from the lab to the fab at 7nm or 5nm. Today, selective deposition is still in R&D, but it is gaining momentum in the industry. With R&D funding from Intel and others, selective deposition, sometimes called ALD-e... » read more

It’s a Materials World, With Positive Forecast


By Michael Fury What’s the latest in materials forecasts for ALD/CVD precursors, CMP consumables, electronic gases, silicon wafers and sputtering targets? Techcet gives us an update. Metal Gate and Electrode Precursors to Double in Five Years Use of front-end Ta and W metal gate and Hf gate dielectric precursors will grow over 2.5x by 2020, according to a new report from Techcet, “20... » read more

New Patterning Paradigm?


Chip scaling is becoming more difficult at each process node, but the industry continues to find new and innovative ways to solve the problems at every turn. And so chipmakers continue to march down the various process nodes. But the question is for how much longer? In fact, at 16nm/14nm and beyond, chipmakers are finding new and different challenges, which, in turn, could slow IC scaling or br... » read more

Issues And Options At 5nm


While the foundries are ramping up their processes for the 16nm/14nm node, vendors are also busy developing technologies for 10nm and beyond. In fact, chipmakers are finalizing their 10nm process offerings, but they are still weighing the technology options for 7nm. And if that isn’t enough, IC makers are beginning to look at the options at 5nm and beyond. Today, chipmakers can see a p... » read more

← Older posts