Manufacturing Bits: May 5


Spiking neural network radar chip Imec has developed what the R&D organization says is the world’s first chip that processes radar signals using a spiking recurrent neural network. Initially, the chip from Imec is designed for low-power, anti-collision radar systems in drones. Neural networks are used in the field of machine learning. A subset of AI, machine learning utilizes a neu... » read more

Manufacturing Bits: March 24


Autonomous microscopes FLEET, also known as the ARC Centre of Excellence in Future Low-Energy Electronics Technologies, has developed an autonomous scanning probe microscopy (SPM) technology. SPM is an instrument that makes use of an atomically sharp probe. The probe is placed in close proximity above the surface of a sample. With the probe, the SPM forms images of the surface of the sample... » read more

Power/Performance Bits: March 9


Healing perovskites Researchers at Brown University found that while perovskite solar cells can crack easily, they are also capable of healing those cracks. "The efficiency of perovskite solar cells has grown very quickly and now rivals silicon in laboratory cells," said Nitin Padture, a professor in Brown's School of Engineering and director of Brown's Institute for Molecular and Nanoscale... » read more

System Bits: July 23


Superconductivity seen in trilayer graphene Stanford University and University of California at Berkeley researchers discovered signs of superconductivity in stacking three-layer sheets of graphene, they report. “It’s definitely an exciting development,” says Cory Dean, a physicist at Columbia University. Dean notes that bilayer graphene superconducts only when the atomic lattices of ... » read more

Power/Performance Bits: July 23


Image-recognizing glass Engineers at the University of Wisconsin-Madison, MIT, and Columbia University developed a way to create 'smart' glass capable of performing image recognition tasks without the need for electronics or power. "We're using optics to condense the normal setup of cameras, sensors and deep neural networks into a single piece of thin glass," said Zongfu Yu, electrical and ... » read more

Manufacturing Bits: Feb. 11


How things stick together Using a metrology technique called atomic force microscopy (AFM), Brown University has gained more insights into the theory of adhesion or how things stick together. Understanding the theory of adhesion also has some practical applications. It could pave the way towards a new class of MEMS or nanoscale devices. Nanoscale patterning is another potential application.... » read more

System Bits: Oct. 23


Adapting machine learning for use in scientific research To better tailor machine learning for effective use in scientific research, the U.S. Department of Energy has awarded a collaborative grant to a group of researchers, including UC Santa Barbara mathematician Paul Atzberger, to establish a new data science research center. According to UCSB, the Physics-Informed Learning Machines for M... » read more

System Bits: Aug. 7


ML leverages existing hospital patient data to detect trouble Focusing on emergency and critical care patients, a University of Michigan spinout, Fifth Eye, has developed a system that combines a machine learning algorithm with signal processing to monitor the autonomic nervous system of hospital patients and interprets the data every two minutes, which can sometimes be almost two days faster ... » read more

Power/Performance Bits: Mar. 6


Neural network chip Neural networks are both slow and consume a lot of power. This made researchers at MIT examine the important aspects of the nodes within a neural network and to see how each part of the computation could be improved. The outcome was a dedicated chip that increases the speed of neural-network computations by three to seven times over its predecessors, while reducing power c... » read more

Manufacturing Bits: March 22


Tunable windows Harvard University has put a new twist on tunable windows. Researchers have devised a new manufacturing technique that can change the opacity of a window. With the flip of a switch, the window can become cloudy, clear or somewhere in the middle. Tunable windows, which aren’t new, rely on electrochemical reactions. Typically, the glass is coated with materials using vacuum... » read more

← Older posts Newer posts →