Exploring New Scaling Approaches


At the recent SPIE Photomask Technology + Extreme Ultraviolet Lithography 2017 conference, Semiconductor Engineering sat down to discuss semiconductor technology with Tsu-Jae King Liu, the TSMC Distinguished Professor in Microelectronics in the Department of Electrical Engineering and Computer Sciences at the University of California at Berkeley. More specifically, Liu discussed some of the new... » read more

Power/Performance Bits: Sept. 5


Energy-harvesting yarn Researchers at the University of Texas at Dallas and Hanyang University in South Korea developed a carbon nanotube yarn that generates electricity when stretched or twisted. Possible applications for the so-called "twistron" yarns include harvesting energy from the motion of ocean waves or from temperature fluctuations. When sewn into a shirt, these yarns served as a sel... » read more

Power/Performance Bits: July 11


3D chip integrates computing, storage Researchers at Stanford University and MIT developed a prototype 3D chip that integrates computation and data storage, based on carbon nanotubes and resistive RAM (RRAM) cells. The researchers integrated over 1 million RRAM cells and 2 million carbon nanotube FETs, making what the team says is the most complex nanoelectronic system ever made with emergi... » read more

Power/Performance Bits: June 13


Theoretical all-carbon circuits Engineers at the University of Texas at Dallas, the University of Illinois at Urbana-Champaign, the University of Central Florida, and Northwestern University designed a novel computing system made solely from carbon. "The concept brings together an assortment of existing nanoscale technologies and combines them in a new way," said Dr. Joseph S. Friedman, ass... » read more

System Bits: Jan. 24


Modified carbon nanotubes used to track individual cells Carbon nanotubes come to the forefront of scientific research yet again, this time for serving as the most sensitive molecular sensing platforms available. MIT engineers believe they have designed sensors that, for the first time, can detect single protein molecules as they are secreted by cells or even a single cell. The sensors that... » read more

Power/Performance Bits: Dec. 20


Stamping with electronic ink Engineers at MIT fabricated a stamp made from carbon nanotubes that is able to print electronic inks onto rigid and flexible surfaces. The team's stamping process should be able to print transistors small enough to control individual pixels in high-resolution displays and touchscreens, said A. John Hart, associate professor of contemporary technology and mecha... » read more

Tech Talk: Embedded Memories


Dave Eggleston, vice president of embedded memory at GlobalFoundries, talks about the pros and cons of new types of embedded memory, including which work best for certain applications and with various advanced packaging options. [youtube vid=7D9zoA9FFIw] » read more

Power/Performance Bits: Oct. 11


Getting to 1nm Researchers at the Lawrence Berkeley National Laboratory, UC Berkeley, University of Texas at Dallas, and Stanford University created a transistor with a working 1nm gate from carbon nanotubes and molybdenum disulfide (MoS2). "The semiconductor industry has long assumed that any gate below 5 nanometers wouldn't work, so anything below that was not even considered," said fir... » read more

Power/Performance Bits: Sept. 6


Carbon nanotube transistors outperform silicon University of Wisconsin-Madison materials engineers created carbon nanotube transistors that outperform silicon transistors, improving the current 1.9 times. The new transistors are particularly promising for wireless communications technologies that require a lot of current flowing across a relatively small area. "This achievement has been a... » read more

Power/Performance Bits: Aug. 23


Connecting implanted devices University of Washington researchers developed a new method for communication between devices such as brain implants, contact lenses, credit cards and smaller wearable electronics with other devices such as smartphones and watches. Using only reflections, an interscatter system requires no specialized equipment, relying solely on mobile devices to generate Wi-... » read more

← Older posts