Mitigating Voltage Droop


Voltage droop, also known as IR drop, is a phenomenon that occurs when the current in the power delivery network abruptly changes due to workload fluctuations. This can lead to supply voltage drops across system-on-chips (SoCs) which can cause severe performance degradation, limit their energy efficiency, and in extreme cases can cause catastrophic timing failures. To avoid these issues, conven... » read more

Squeezing The Margins


Back in 2016, we looked at the MediaTek Helio X20, the first Tri-Gear mobile SoC. Tri-Gear is a step beyond ARM’s big.LITTLE concept of using two different cores that have unique power and performance characteristics, by adding a third core. The main advantage to this approach is having more core choices to best run workloads at better energy efficiency and performance operating points. At... » read more

Adaptive Clocking: Minding Your P-States And C-States


Larger processor arrays are here to stay for AI and cloud applications. For example, Ampere offers a 128-core behemoth for hyperscalers (mainly Oracle), while Esperanto integrates almost 10x more cores for AI workloads. However, power management becomes increasingly important with these arrays, and system designers need to balance dynamic power with system latency. As we march year over year, t... » read more

Early Simulation Of Multi-Cycle Paths And False Paths


Designing with synchronous clocks avoids metastability issues on clock domain crossings, but it presents its own challenges when multi-cycle and false paths are involved. A multi-cycle path (MCP) occurs when a logical function requires more than one clock cycle to produce a final, stable result. The designer must ensure that the destination register does not clock until the result is ready. Thi... » read more

Signal Connectivity Checks Are Not Just For Design-For-Test Teams


By Pawini Mahajan and Raja Koneru The complexity with system-on-chip (SoC) design continues to grow, creating greater complexity of the corresponding design-for-test (DFT) logic required for manufacturing tests. Design teams are challenged not only by high gate counts and the array of internally developed and third-party IP integrated into their designs: the need to achieve high-quality manu... » read more

FPGA And System Designs Get To Market Faster Leveraging ASIC-Proven Analysis Tools


Increasing power constraints have resulted in finer-grained partitioning of designs into functional domains that can have clocks disabled or, more drastically, are powered down entirely. Systems are required to adaptively manage clocks to minimize switching power. Performance and area constraints have led to the abandonment of more conservative practices in favor of more aggressive designs; ... » read more

How To Close Timing With An eFPGA Hosted In An SoC


eFPGAs are embeddable IP that include look-up tables, memories, and DSP building blocks, allowing designers to add a programmable logic fabric to their SoC. The Speedcore IP can be configured to any size as dictated by the end application. The SoC supplier defines the number of LUTs, memory resources, and DSP64 blocks for their Speedcore instance. A short time later, Achronix delivers the IP as... » read more