Multi-Patterning Issues At 7nm, 5nm


Continuing to rely on 193nm immersion lithography with multiple patterning is becoming much more difficult at 7nm and 5nm. With the help of various resolution enhancement techniques, optical lithography using a deep ultraviolet excimer laser has been the workhorse patterning technology in the fab since the early 1980s. It is so closely tied with the continuation of [getkc id="74" comment="Mo... » read more

More EUV Mask Gaps


Extreme ultraviolet (EUV) lithography is at a critical juncture. After several delays and glitches, [gettech id="31045" comment="EUV"] is now targeted for 7nm and/or 5nm. But there are still a number of technologies that must come together before EUV is inserted into mass production. And if the pieces don’t fall into place, EUV could slip again. First, the EUV source must generate more ... » read more

Will GPU-Acceleration Mean The End Of Empirical Mask Models?


Shrinking mask feature sizes and increasing proximity effects are driving the adoption of simulation-based mask processing. Empirical models have been most widely used to date, because they are faster to simulate. Today, GPU-acceleration is enabling fast simulation using physical models. Does the ability of GPU-acceleration to make physical models a practical solution mean the end of empirical ... » read more

What Happened To Inverse Lithography?


Nearly 10 years ago, the industry rolled out a potentially disruptive technique called inverse lithography technology (ILT). But ILT was ahead of its time, causing the industry to push out the technology and relegate it to niche-oriented applications. Today, though, ILT is getting new attention as the semiconductor industry pushes toward 7nm, and perhaps beyond. ILT is not a next-generation ... » read more

GPU Accelerated Computing


The computing applications used in semiconductor design and manufacturing have ever-increasing requirements for speed, accuracy and reliability. The continuation of Moore's Law creates a perpetual demand for greater accuracy as, with each new process node, larger numbers of increasingly smaller features are crowded onto each mask and wafer. Computing farms, where thousands of central processing... » read more

The Week In Review: Manufacturing


Chipmakers Alain Kaloyeros, president of SUNY Polytechnic Institute, has resigned. This comes amid charges that Kaloyeros was involved in an alleged bid-rigging scheme, according to multiple reports. SUNY Poly, a high-tech educational ecosystem in New York, was recently formed from the merger of the SUNY College of Nanoscale Science and Engineering (CNSE) and the SUNY Institute of Technology. ... » read more

5 Takeaways From BACUS


As usual, the recent SPIE Photomask Technology Conference, sometimes called BACUS, was a busy event. The event, which took place in San Jose, Calif., featured presentations on the usual subjects in the photomask sector. There were presentations on mask writers, inspection, metrology, repair and cleaning. And, of course, the papers included masks based on extreme ultraviolet (EUV) lithography... » read more

Mask Maker Worries Grow


Photomasks are becoming more complex and expensive at each node, thereby creating a number of challenges on several fronts. For one thing, the features on the [getkc id="265" kc_name="photomask"] are becoming smaller and more complex at each node. Second, the number of masks per mask-set are increasing as a result of multiple patterning. Third, it costs more to build and equip a new mask fab... » read more

The Week In Review: Manufacturing


Chipmakers The finFET market is heating up. GlobalFoundries, Intel, Samsung and TSMC are ramping 16nm/14nm finFETs. And 10nm and 7nm finFETs are in the works. The market will shortly have a new competitor—Taiwan’s United Microelectronics Corp. (UMC). Some years ago, UMC licensed finFET technology from IBM. UMC has been a bit quiet about the 14nm finFET technology, but it has made si... » read more

Speeding Up Mask Production


Chip production is becoming more complex and expensive at each node. As a result, chipmakers require a growing number of new manufacturing technologies to enable the next wave of devices at advanced nodes. In the fab, for example, the most obvious need is extreme ultraviolet ([gettech id="31045" comment="EUV"]) lithography. In addition, chipmakers also need a new class of atomic-level proces... » read more

← Older posts Newer posts →