Pivoting Toward Safety-Critical Verification In Cars


The inclusion of AI chips in automotive and increasingly in avionics has put a spotlight on advanced-node designs that can meet all of the ASIL-D requirements for temperature and stress. How should designers approach this task, particularly when these devices need to last longer than the applications? Semiconductor Engineering sat down to discuss these issues with Kurt Shuler, vice president of... » read more

Next Challenge: Known Good Systems


The leading edge of design is heading toward multi-die/multi-chiplet architectures, and an increasing number of mainstream designs likely will follow as processing moves closer to the edge. This doesn't mean every chipmaker will be designing leading-edge chips, of course. But more devices will have at least some leading-edge logic or will be connected over some advanced interconnect scheme t... » read more

An Optimal Path To DFT Automation


To keep up with time-to-market demands when SoCs keep increasing in size and complexity requires the adoption of better DFT flows and technologies. One of the most successful changes in design-for-test (DFT) flows in recent years has been the deployment of hierarchical DFT. Taking the divide-and-conquer approach delivers real savings in test time and cost, plus keeps DFT out of the critical pat... » read more

Verification Pilgrims Show A Historical Case For DFT


The Mayflower Steps, where the Pilgrims are believed to have embarked on their journey to America, are located in the beautiful Barbican area of Plymouth, a small town in the southwest of England. As the lone American working for Moortec, a British company based in Plymouth, I stood and stared at them this past September. Separated by a few yards of distance but 399 years of history I found my... » read more

The Great Test Blur


As chip design and manufacturing shift left and right, concerns over reliability are suddenly front and center. But figuring out what exactly what causes a chip to malfunction, or at least not meet specs for performance and power, is getting much more difficult. There are several converging trends here, each of which plays an integral role in improving reliability. But how significant a role... » read more

BiST Grows Up In Automotive


Test concepts and methods that have been used for many years in traditional semiconductor and SoC design are now being leveraged for automotive chips, but they need to be adapted and upgraded to enable monitoring of advanced automotive systems during operation of a vehicle. Automotive and safety critical designs have very high quality, reliability, and safety requirements, which pairs pe... » read more

Smart Plug-And-Play DFT For Arm Cores


Modern SoCs are experiencing continued growth in capabilities and design sizes with more and more subsystem IPs being implemented. These large, complex, multi-core SoCs need strategies for DFT and ATPG that effectively reduce DFT effort, minimize ATPG runtime, and still achieve the target test coverage. Hierarchical DFT enables designing and testing of these designs in a systematic and repeatab... » read more

Automotive, AI Drive Big Changes In Test


Design for test is becoming enormously more challenging at advanced nodes and in increasingly heterogeneous designs, where there may be dozens of different processing elements and memories. Historically, test was considered a necessary but rather mundane task. Much has changed over the past year or so. As systemic complexity rises, and as the role of ICs in safety-critical markets continues ... » read more

How To Manage DFT For AI Chips


Semiconductor companies are racing to develop AI-specific chips to meet the rapidly growing compute requirements for artificial intelligence (AI) systems. AI chips from companies like Graphcore and Mythic are ASICs based on the novel, massively parallel architectures that maximize data processing capabilities for AI workloads. Others, like Intel, Nvidia, and AMD, are optimizing existing archite... » read more

Building Bridges: A New DFT Paradigm


Over the last twenty years, structural testing with scan chains has become pervasive in chip design methodology. Indeed, it’s remarkable to think that most electronic devices we interact with today (think smartphones, laptops, televisions, etc.) contain hundreds to thousands of interconnected scan chains used to verify that the semiconductors were manufactured without defects. Because the imp... » read more

← Older posts