Demonstrating A 2D–0D Hybrid Optical Multi-Level Memory Device Operated By Laser Pulses


A technical paper titled “Probing Optical Multi-Level Memory Effects in Single Core–Shell Quantum Dots and Application Through 2D-0D Hybrid Inverters” was published by researchers at Korea Institute of Science and Technology (KIST), Korea University, Daegu Gyeongbuk Institute of Science and Technology (DGIST), National Institute for Materials Science (Japan), and University of Science and... » read more

Chip Industry’s Technical Paper Roundup: Nov. 21


New technical papers added to Semiconductor Engineering’s library this week. [table id=65 /] » read more

Memory and Energy-Efficient Batch Normalization Hardware


A new technical paper titled "LightNorm: Area and Energy-Efficient Batch Normalization Hardware for On-Device DNN Training" was published by researchers at DGIST (Daegu Gyeongbuk Institute of Science and Technology). The work was supported by Samsung Research Funding Incubation Center. Abstract: "When training early-stage deep neural networks (DNNs), generating intermediate features via con... » read more

Power/Performance Bits: Dec. 28


Shrinking LEDs Researchers from King Abdullah University of Science and Technology (KAUST) are working to make LEDs smaller. Micrometer-scale light-emitting diodes (μLEDs) could be an ideal building block for future microLED displays, but devices based on nitride-based alloys used to achieve a broad color range become poor emitters of light when shrunk to micrometer scales. “The main ... » read more

HyperRec: Efficient Recommender Systems with Hyperdimensional Computing


A group of researchers are taking a different approach to AI. The University of California at San Diego, the University of California at Irvine, San Diego State University and DGIST recently presented a paper on a new hardware algorithm based on hyperdimensional (HD) computing, which is a brain-inspired computing model. The new algorithm, called HyperRec, uses data that is modeled with bina... » read more

Manufacturing Bits: May 10


Synaptic transistors The University of Hong Kong and Northwestern University have developed an organic electrochemical synaptic transistor, a technology that could one day process and store information like the human brain. Researchers have demonstrated that the transistor can mimic the synapses in the human brain. It can build on memories to learn over time, according to researchers. Th... » read more

Power/Performance Bits: Aug. 18


Flexible, hole-filled films Researchers from Daegu Gyeongbuk Institute of Science and Technology (DGIST) and Hongik University propose a simple way to make flexible electrodes and thin film transistors last longer: adding lots of tiny holes. A major problem with flexible electronics is the formation of microscopic cracks after repeated bending which can cause the device to lose its conducti... » read more

Power/Performance Bits: April 14


Undoped polymer ink Researchers at Linköping University, Chalmers University of Technology, University of Washington, University of Cologne, Chiba University, and Yunnan University developed an organic ink for printable electronics that doesn't need to be doped for good conductivity. "We normally dope our organic polymers to improve their conductivity and the device performance. The proces... » read more