Manufacturing Bits: June 23


Diamond shock waves For years, the industry has been exploring the use of diamonds for electronics applications. Diamonds could be used to reduce heat in electronic systems. In addition, diamond FETs are also intriguing. Diamond has a wide bandgap (5.45 eV), a high breakdown field (10MV/cm), and high thermal conductivity (22W/cmK). But it could take years before diamond FETs reach the mains... » read more

Manufacturing Bits: Nov. 25


Direct-write diamond patterning Purdue University has devised a new technique that uses a pulsing laser to create synthetic nanodiamond films and patterns on a graphite substrate. The ability to pattern diamond surfaces could one day be used to make chips, biosensors and fuel cells. In the lab, researchers devised a multi-layered film, which includes a layer of graphite topped with a glass ... » read more

Manufacturing Bits: Oct. 29


Diamond chips The optical transistor, which transports photons, holds great promise. Photons are not only faster than electrons, but they have less crosstalk. But optical transistors are also expensive and difficult to produce. In a possible breakthrough, the ICFO-Institute of Photonic Sciences has demonstrated a “nano-size” diamond that can act as an efficient optical switch. Researche... » read more

New Approaches To Better Performance And Lower Power


By Ed Sperling Until 90nm, every feature shrink and rev of Moore’s Law included a side benefit of better power and performance. After that, improvements involved everything from different back-end processes to copper interconnects and transistor structures. But from 20nm onward, the future will rest with a combination of new materials, new architectures and new packaging approaches—and som... » read more

Newer posts →