中文 English

Security Concerns Rise For Connected Autos


The auto industry is transforming itself toward a future in which the automobile increasingly will be connected using V2X and 5G. Driver assistance will improve, and ultimately cars will be guided by AI and machine learning. But all of this will be closely watched by hackers, looking for an opening and a potentially large and untraceable payout. The replacement of mechanical functionality wi... » read more

Auto OEMs Face New Competitive Threats


Automotive design and manufacturing are undergoing a fundamental shift to the left as cars increasingly are electrified and chips take over more functions formerly done by mechanical parts, setting the stage for massive disruption across a supply chain that has been in place for decades. The success of Tesla — a company that had never actually built a chip or a car — was both a surprise ... » read more

Functional Safety For Fail-Operational Systems


Functional safety issues have long been an important part of product development wherever machine operations that are potentially dangerous for humans are carried out unattended. However, in terms of electrical and electronic systems, the need has been limited to a few industries such as medical technology and aerospace. Apart from that, the functional safety concepts were only used for niche p... » read more

Safeguarding Automotive Electronics


Modern automobiles can have up to 100 Electronic Control Units (ECUs) depending on their class, make, and model, with the number of ECUs rising even higher in the case of electric vehicles. An ECU is an embedded system in the car’s electronics. They are used to control all the vehicle's functions, including engine, powertrain, transmission, brakes, suspension, dashboard, entertainment system ... » read more

Growing Complexity Adds To Auto IC Safety Challenges


The automotive industry is working to streamline, automate and tame verification of automotive electronic control units, SoCs and other chips used in vehicles, many of which are becoming so complex and intertwined that progress is getting bogged down. Modern cars may have up to 100 ECUs, which control such vehicle functions as engine, powertrain, transmission, brakes, suspension, entertainme... » read more

Have Processor Counts Stalled?


Survey data suggests that additional microprocessor cores are not being added into SoCs, but you have to dig into the numbers to find out what is really going on. The reasons are complicated. They include everything from software programming models to market shifts and new use cases. So while the survey numbers appear to be flat, market and technology dynamics could have a big impact in resh... » read more

Data Strategy Shifting Again In Cars


Carmakers are modifying their data processing strategies to include more processing at or near the source of data, reducing the amount of data that needs to be moved around within a vehicle to both improve response time and free up compute resources. These moves are a world away from the initial idea that terabytes of streaming data would be processed in the cloud and sent back to the vehicl... » read more

Auto Power Becoming Much More Complex


Rising electronics content in automobiles is putting increased focus on automotive power delivery networks (PDNs). Safety implications mean that thorough power design and verification, along with novel power isolation techniques, are needed at the vehicle level, involving both electrical and mechanical considerations. The electronic takeover can be measured by the percentage that electronic ... » read more

PowerPR Virtualization: A Critical Feature For Automotive GPUs


What is GPU virtualization? Conceptually, virtualization is the capability of a device to host one or more virtual machines (VMs) that each behave like actual independent machines with their own operating system (OS), all running on the same underlying device hardware. In regard to GPUs, this means the capability to support multiple concurrently running operating systems, each capable of submit... » read more

Automotive E/E Architectures Are Key To Continued Innovation


Modern vehicles commonly are described as “computers-on-wheels” due to the recent explosion of computing power and electronic features manufacturers are equipping in their vehicles. The world’s first automobiles were relatively simple, and entirely mechanically operated. The first automotive electrical components were not even available until the 1930s, when manufacturers began offering v... » read more

← Older posts