中文 English

Manufacturing Bits: April 13


Error-correction DNA storage Los Alamos National Laboratory has developed a key technology that could one day pave the way towards DNA storage. Researchers have developed a technology called the Adaptive DNA Storage Codec (ADS Codex). ADS Codex is software that translates digital binary files into the four-letter genetic alphabet needed for DNA storage. Deoxyribonucleic acid (DNA) is a m... » read more

Power/Performance Bits: Feb. 23


Photonic AI accelerator There are now many processors and accelerators focused on speeding up neural network performance, but researchers at the University of Münster, University of Oxford, Swiss Federal Institute of Technology Lausanne (EPFL), IBM Research Europe, and University of Exeter say AI processing could happen even faster with the use of photonic tensor processors that can handle mu... » read more

Power/Performance Bits: Dec. 7


Logic-in-memory with MoS2 Engineers at École Polytechnique Fédérale de Lausanne (EPFL) built a logic-in-memory device using molybdenum disulfide (MoS2) as the channel material. MoS2 is a three-atom-thick 2D material and excellent semiconductor. The new chip is based on floating-gate field-effect transistors (FGFETs) that can hold electric charges for long periods. MoS2 is particularly se... » read more

Power/Performance Bits: Nov. 9


Integrated transistor cooling Researchers at Ecole Polytechnique Fédérale de Lausanne (EPFL) created a single chip that combines a transistor and microfluidic cooling system for more efficient transistor heat management. The team focused on a co-design approach for the electrical and mechanical aspects of the chip, bringing the electronics and cooling design together and aiming to extract... » read more

Power/Performance Bits: Sept. 15


Higher-res lidar Researchers from Purdue University and École Polytechnique Fédérale de Lausanne (EPFL) devised a way to improve lidar and provide higher-resolution detection of nearby fast-moving objects through mechanical control and modulation of light on a silicon chip. "Frequency modulated continuous wave" (FMCW) lidar detects objects by scanning laser light from the top of a vehicl... » read more

Power/Performance Bits: Sept. 9


Smaller, cheaper integrated photonics Researchers from the University of California Santa Barbara, California Institute of Technology (Caltech), and Ecole Polytechnique Fédérale de Lausanne (EPFL) developed a way to integrate an optical frequency comb on a silicon photonic chip. Optical frequency combs are collections of equally spaced frequencies of laser light (so called because when pl... » read more

Week In Review: Design, Low Power


Galaxy Semiconductor re-established with the planned acquisition of the Quantix Business assets from Mentor, a Siemens business. The software products Galaxy is acquiring focus on yield optimization, device characterization, and reliability improvement. Galaxy was initially founded in 1998; the Galway, Ireland-based company was then acquired by Mentor Graphics in 2016. The re-established compan... » read more

Power/Performance Bits: May 5


CMOS-compatible laser Researchers at Forschungszentrum Jülich, Center for Nanoscience and Nanotechnology (C2N), STMicroelectronics, and CEA-Leti Grenoble developed a CMOS-compatible laser for optical data transfer. Comprised of germanium and tin, the efficiency is comparable with conventional GaAs semiconductor lasers on Si. Optical communications provide much higher data rates, and are be... » read more

Power/Performance Bits: Aug. 27


The sound of typing Cybersecurity researchers at the Southern Methodist University found a way to detect what a user is typing based on sensor data collected from a nearby smartphone. The team found that acoustic signals produced by typing on a computer keyboard can successfully be picked up by a smartphone, which can then be processed to determine which keys were struck – even in noisy conf... » read more

Blog Review: June 19


Mentor's Rebecca Lord digs into signal integrity complications and why today's high frequency signals make it important to understand the physics of transmission lines. Cadence's Meera Collier points to the need to recognize diversity and nuance when compiling AI training datasets and avoid the oversimplification that can lead to bias. Synopsys' Deepak Nagaria checks out the new features ... » read more

← Older posts