中文 English

Zero-Bias Power-Detector Circuits based on MoS2 Field-Effect Transistors on Wafer-Scale Flexible Substrates


Abstract: "We demonstrate the design, fabrication, and characterization of wafer-scale, zero-bias power detectors based on two-dimensional MoS2 field effect transistors (FETs). The MoS2 FETs are fabricated using a wafer-scale process on 8 μm thick polyimide film, which in principle serves as flexible substrate. The performances of two CVD-MoS2 sheets, grown with different processes and showi... » read more

Label-Free C-Reactive Protein Si Nanowire FET Sensor Arrays With Super-Nernstian Back-Gate Operation


Abstract: "We present a CMOS-compatible double gate and label-free C-reactive protein (CRP) sensor, based on silicon on insulator (SOI) silicon nanowires arrays. We exploit a reference subtracted detection method and a super-Nernstian internal amplification given by the double gate structure. We overcome the Debye screening of charged CRP proteins in solutions using antibodies fragments as c... » read more

Power/Performance Bits: Feb. 7


Stopping interference in integrated photonics Researchers at EPFL and Purdue University combined integrated photonics and MEMS to develop an electrically driven optical isolator-on-a-chip that transmits light in only one direction. Optical isolators are useful to prevent reflected light from other components compromising or interfering with an on-chip laser’s performance. They are often c... » read more

Power/Performance Bits: June 15


Low-loss photonic IC Researchers at EPFL built a photonic integrated circuit with ultra-low loss. The team focused on silicon nitride (Si3N4), which has orders of magnitude lower optical loss compared to silicon. It is used in low-loss applications such as narrow-linewidth lasers, photonic delay lines, and nonlinear photonics. In applying the material to photonic ICs, they took advantage... » read more

Power/Performance Bits: June 7


Commercializing photonic MEMS Researchers from the University of California Berkeley, Daegu Gyeongbuk Institute of Science & Technology, SUSS MicroOptics, TSI Semiconductors, Gwangju Institute of Science and Technology, KAIST, Ecole Polytechnique Fédérale de Lausanne (EPFL), and Korea Polytechnic University demonstrated a path for commercial fabrication of photonic MEMS. Photonic MEMS... » read more

Power/Performance Bits: May 18


Efficient high-voltage power conversion Researchers from École Polytechnique Fédérale de Lausanne (EPFL) and Enkris Semiconductor are working to design new power transistors with the aim of improving power converter efficiency. "We see examples of electric power losses every day, such as when the charger of your laptop heats up," said Elison Matioli, head of EPFL's POWERlab, noting that ... » read more

Manufacturing Bits: April 13


Error-correction DNA storage Los Alamos National Laboratory has developed a key technology that could one day pave the way towards DNA storage. Researchers have developed a technology called the Adaptive DNA Storage Codec (ADS Codex). ADS Codex is software that translates digital binary files into the four-letter genetic alphabet needed for DNA storage. Deoxyribonucleic acid (DNA) is a m... » read more

Power/Performance Bits: Feb. 23


Photonic AI accelerator There are now many processors and accelerators focused on speeding up neural network performance, but researchers at the University of Münster, University of Oxford, Swiss Federal Institute of Technology Lausanne (EPFL), IBM Research Europe, and University of Exeter say AI processing could happen even faster with the use of photonic tensor processors that can handle mu... » read more

Power/Performance Bits: Dec. 7


Logic-in-memory with MoS2 Engineers at École Polytechnique Fédérale de Lausanne (EPFL) built a logic-in-memory device using molybdenum disulfide (MoS2) as the channel material. MoS2 is a three-atom-thick 2D material and excellent semiconductor. The new chip is based on floating-gate field-effect transistors (FGFETs) that can hold electric charges for long periods. MoS2 is particularly se... » read more

Power/Performance Bits: Nov. 9


Integrated transistor cooling Researchers at Ecole Polytechnique Fédérale de Lausanne (EPFL) created a single chip that combines a transistor and microfluidic cooling system for more efficient transistor heat management. The team focused on a co-design approach for the electrical and mechanical aspects of the chip, bringing the electronics and cooling design together and aiming to extract... » read more

← Older posts