Interoperability And Automation Yield A Scalable And Efficient Safety Workflow


By Ann Keffer, Arun Gogineni, and James Kim Cars deploying ADAS and AV features rely on complex digital and analog systems to perform critical real-time applications. The large number of faults that need to be tested in these modern automotive designs make performing safety verification using a single technology impractical. Yet, developing an optimized safety methodology with specific f... » read more

Simulation-Based Fault Analysis for Resilient System-On-Chip Design


Abstract: "Enhancing the reliability of the system is important for recent system-on-chip (SoC) designs. This importance has led to studies on fault diagnosis and tolerance. Fault-injection (FI) techniques are widely used to measure the fault-tolerance capabilities of resilient systems. FI techniques suffer from limitations in relation to environmental conditions and system features. Moreover,... » read more

Rethinking Your Approach To Radiation Mitigation


Formal verification and automation provide an effective, high quality, and repeatable process for fault analysis, protection, and verification for FPGA designs used in high radiation environments. This paper describes an automated systematic approach based on formal verification structural and static analysis that identifies design susceptibility to radiation induced faults. To read more, clic... » read more

ISO 26262:2018 Fault Analysis In Safety Mechanisms


Authors: Jörg Grosse1, Mark Hampton1, Sergio Marchese1, Jörg Koch2, Neil Rattray1, Alin Zagardan2 1OneSpin Solutions, Munich, Germany 2Renesas Electronics Europe, Duesseldorf, Germany ISO 26262-5 requires the determination of hardware safety metrics, including SPFM and LFM. Latent and residual diagnostic coverage are also important metrics to assess the effectiveness of safety mechanisms... » read more