Power/Performance Bits: Sept. 8


Backscatter radios for 5G Researchers at the Georgia Institute of Technology, Nokia Bell Labs, and Heriot-Watt University propose using backscatter radios to support high-throughput communication and 5G-speed Gb/sec data transfer using only a single transistor. “Our breakthrough is being able to communicate over 5G/millimeter-wave (mmWave) frequencies without actually having a full mmWave... » read more

FORMS: Fine-grained Polarized ReRAM-based In-situ Computation for Mixed-signal DNN Accelerator


Abstract: "Recent work demonstrated the promise of using resistive random access memory (ReRAM) as an emerging technology to perform inherently parallel analog domain in-situ matrix-vector multiplication—the intensive and key computation in deep neural networks (DNNs). One key problem is the weights that are signed values. However, in a ReRAM crossbar, weights are stored as conductance of... » read more

Power/Performance Bits: May 25


5G energy harvesting Researchers at Georgia Institute of Technology propose a way to harvest power for IoT devices using 5G networks. The team's device uses a flexible Rotman lens-based rectifying antenna (rectenna) system capable of millimeter-wave harvesting in the 28-GHz band. “With this innovation, we can have a large antenna, which works at higher frequencies and can receive power fr... » read more

Power/Performance Bits: May 10


Probabilistic bit Researchers at Tohoku University are working on building probabilistic computers by developing a spintronics-based probabilistic bit (p-bit). The researchers utilized magnetic tunnel junctions (MTJs). Most commonly used in MRAM technology, where thermal fluctuation typically poses a threat to the stable storage of information, in this case it was a benefit. The p-bits f... » read more

Chasing After Carbon Nanotube FETs


Carbon nanotube transistors are finally making progress for potential use in advanced logic chips after nearly a quarter century in R&D. The question now is whether they will move out of the lab and into the fab. Several government agencies, companies, foundries, and universities over the years have been developing, and are now making advancements with carbon nanotube field-effect transi... » read more

Manufacturing Bits: Oct. 6


High-NA EUV mask materials A team of researchers have presented a new paper on the tradeoffs of photomask absorber materials for high-NA extreme ultraviolet (EUV) lithography. In the paper, researchers concluded that the industry will likely require an alternative mask absorber stack for high-numerical aperture (high-NA) EUV lithography. Fraunhofer, Imec, ASML and Zeiss contributed to the... » read more

Power/Performance Bits: Aug. 4


Assessing code similarity Researchers from Intel, MIT, and Georgia Institute of Technology created an automated engine designed to learn what a piece of software intends to do by studying the structure of the code and analyzing syntactic differences of other code with similar behavior. The machine inferred code similarity (MISIM) program, a subset of Intel's work on machine programming, was... » read more

Manufacturing Bits: June 23


Fan-out gas sensors At the recent IEEE Electronic Components and Technology Conference (ECTC), the University of California at Los Angeles (UCLA) and the Indian Institute of Science presented a paper on the development of a wearable MEMS gas sensor device based on a flexible wafer-level fan-out packaging technology. Researchers have demonstrated a gas sensor device or a personal environment... » read more

Power/Performance Bits: April 14


Undoped polymer ink Researchers at Linköping University, Chalmers University of Technology, University of Washington, University of Cologne, Chiba University, and Yunnan University developed an organic ink for printable electronics that doesn't need to be doped for good conductivity. "We normally dope our organic polymers to improve their conductivity and the device performance. The proces... » read more

Power/Performance Bits: Feb. 4


Infrared nanoantenna Researchers at the University of Würzburg built a nanoantenna capable of generating directed infrared light. The Yagi-Uda antenna is the smallest of its type yet created. "Basically, it works in the same way as its big brothers for radio waves ," said René Kullock, a member of the nano-optics team at Würzburg. An AC voltage is applied that causes electrons in the met... » read more

← Older posts Newer posts →