Digital Twin for Secure Semiconductor Lifecycle Management: Prospects and Applications


Abstract:  "The expansive globalization of the semiconductor supply chain has introduced numerous untrusted entities into different stages of a device’s lifecycle, enabling them to compromise its security. To make matters worse, the increasing complexity in the design as well as aggressive time-to-market requirements of the newer generation of integrated circuits can lead either designers t... » read more

Advances in Logic Locking: Past, Present, and Prospects


Abstract: "Logic locking is a design concealment mechanism for protecting the IPs integrated into modern System-on-Chip (SoC) architectures from a wide range of hardware security threats at the IC manufacturing supply chain. Logic locking primarily helps the designer to protect the IPs against reverse engineering, IP piracy, overproduction, and unauthorized activation. For more than a decade,... » read more

Rethinking Watermark: Providing Proof of IP Ownership in Modern SoCs


Abstract "Intellectual property (IP) cores are essential to creating modern system-on-chips (SoCs). Protecting the IPs deployed in modern SoCs has become more difficult as the IP houses have been established across the globe over the past three decades. The threat posed by IP piracy and overuse has been a topic of research for the past decade or so and has led to creation of a field called wat... » read more

Verifying Side-Channel Security Pre-Silicon


As security grows in importance, side-channel attacks pose a unique challenge because they rely on physical phenomena that aren’t always modeled for the design verification process. While everything can be hacked, the goal is to make it so difficult that an attacker concludes it isn't worth the effort. For side-channel attacks, the pre-silicon design is the best place to address any known ... » read more

DPA Countermeasures Done Right


In the late nineties, Paul Kocher, Josh Jaffe, and Ben Jun published a paper that caused many across industry sectors to reconsider what cryptographic implementations should look like. They described an exploit wherein an adversary could extract secrets from a device by analyzing the power consumption or electromagnetic emittance from the device when it was executing cryptographic operations. S... » read more

A Low-Power BLS12-381 Pairing Cryptoprocessor for Internet-of-Things Security Applications


Abstract: "We present the first BLS12-381 elliptic-curve pairing cryptoprocessor for Internet-of-Things (IoT) security applications. Efficient finite-field arithmetic and algorithm-architecture co-optimizations together enable two orders of magnitude energy savings. We implement several countermeasures against timing and power side-channel attacks. Our cryptoprocessor is programmable to provid... » read more

FortifyIQ: Hardware Security Verification


What’s the best way to protect against side-channel attacks? FortifyIQ believes the answer lies at least partly in the verification process. Side channel and fault-injection attacks have been garnering more attention lately as hackers continue to branch out from software to a combination of software and hardware. This is especially worrying for safety-critical applications, such as automot... » read more

Quantifiable Assurance: From IPs to Platforms


Abstract: "Hardware vulnerabilities are generally considered more difficult to fix than software ones because of their persistent nature after fabrication. Thus, it is crucial to assess the security and fix the potential vulnerabilities in the earlier design phases, such as Register Transfer Level (RTL), gate-level or physical layout. The focus of the existing security assessment techniques i... » read more

An End-to-End Bitstream Tamper Attack Against Flip-Chip FPGAs


Abstract "FPGA bitstream encryption and authentication can be defeated by various techniques and it is critical to understand how these vulnerabilities enable extraction and tampering of commercial FPGA bitstreams. We exploit the physical vulnerability of bitstream encryption keys to readout using failure analysis equipment and conduct an end-to-end bitstream tamper attack. Our work undersco... » read more

Why It’s So Difficult — And Costly — To Secure Chips


Rising concerns about the security of chips used in everything from cars to data centers are driving up the cost and complexity of electronic systems in a variety of ways, some obvious and others less so. Until very recently, semiconductor security was viewed more as a theoretical threat than a real one. Governments certainly worried about adversaries taking control of secure systems through... » read more

← Older posts Newer posts →