The Path To Known Good Interconnects


Chiplets and heterogenous integration (HI) provide a compelling way to continue delivering improvements in performance, power, area, and cost (PPAC) as Moore’s Law slows, but choosing the best way to connect these devices so they behave in consistent and predictable ways is becoming a challenge as the number of options continues to grow. More possibilities also bring more potential interac... » read more

Bump Co-Planarity And Inconsistencies Cause Yield, Reliability Issues


Bumps are a key component in many advanced packages, but at nanoscale levels making sure all those bumps have a consistent height is an increasing challenge. Without co-planarity, surfaces may not properly adhere. That can reduce yield if the problem is not identified in packaging, or it can cause reliability problems in the field. Identifying those issues requires a variety of process steps... » read more

MicroLEDs Move Toward Commercialization


The market for MicroLED displays is heating up, fueled by a raft of innovations in design and manufacturing that can increase yield and reduce prices, making them competitive with LCD and OLED devices. MicroLED displays are brighter and higher contrast than their predecessors, and they are more efficient. Functional prototypes have been developed for watches, AR glasses, TVs, signage, and au... » read more

Hybrid Bonding Basics: What Is Hybrid Bonding?


Hybrid bonding is the key to paving an innovative future in advanced packaging. Hybrid bonding provides a solution that enables higher bandwidth and increased power and signal integrity. As the industry is looking to enhance the performance of final devices through scaling system-level interconnections, hybrid bonding provides the most promising solution with the ability to integrate several di... » read more

A Novel Photosensitive Permanent Bonding Material Designed For Polymer/Metal Hybrid Bonding Applications


Wafer-level hybrid bonding techniques, which provide simultaneous bonding between metal-metal and dielectric-dielectric layers, have attracted more attention in recent years for fabricating 3D integrated circuits with high bandwidth and high interconnect density. However, there are some issues for conventional hybrid bonding using silicon oxide as the dielectric, such as the high stress and low... » read more

Hybrid Bonding Moves Into The Fast Lane


The industry’s unquenchable thirst for I/O density and faster connections between chips, particularly logic and cache memory, is transforming system designs to include 3D architectures, and hybrid bonding has become an essential component in that equation. Hybrid bonding involves die-to-wafer or wafer-to-wafer connection of copper pads that carry power and signals and the surrounding diele... » read more

Technical Paper Round-up: June 14


New technical papers added to Semiconductor Engineering’s library this week. [table id=33 /] Semiconductor Engineering is in the process of building this library of research papers. Please send suggestions (via comments section below) for what else you’d like us to incorporate. If you have research papers you are trying to promote, we will review them to see if they are a good fit f... » read more

Cu/SiO₂ Hybrid Bond Interconnects


Technical paper titled "Microstructure Development of Cu/SiO₂ Hybrid Bond Interconnects After Reliability Tests" from researchers at TU Dresden and others. Abstract: "The focus of this study is a detailed characterization of hybrid Cu/SiO 2 wafer-to-wafer bonding interconnects after reliability testing. Hybrid bonding (or direct bond interconnect) is a technology of choice for fine pitch... » read more

Center Stage: The Time For Hybrid Bonding Has Arrived


When the subject of hybrid bonding is brought up in the industry, the focus is often on how this technique is used to manufacture CMOS image sensors (CIS), an essential device for today’s digital cameras, particularly those found in smartphones. As such, CIS is a common touchpoint given the ubiquity of mobile phones, whether you hold a product from Apple, Samsung, or Huawei in your hands. ... » read more

HBM, Nanosheet FETs Drive X-ray Fab Use


Paul Ryan, vice president and general manager of Bruker’s X-ray Business, sat down with Semiconductor Engineering to discuss the movement of x-ray metrology into manufacturing to better control nanosheet film stacks and solder bump quality. SE: Where are you seeing the greatest growth right now, and what are the critical drivers for your technology from the application side? Ryan: One b... » read more

← Older posts Newer posts →