5 Reasons Why Defect Reduction Is Critical In Semiconductor Material Success


Semiconductors may be small, but the impacts they have are significant. Semiconductors used in life-dependent applications, such as pacemakers, defibrillators, life support systems, automotive safety systems, or in aviation need to be fail-proof. A device smaller than a centimeter with features just a few nanometers has no margin of error. This blog shares why it’s important to detect materia... » read more

Fab And Field Data Transforming Manufacturing Processes


The ability to capture, process, and analyze data in the field is transforming semiconductor metrology and testing, providing invaluable insight into a product's performance in real-time and under real-world conditions and use cases. Historically, data that encapsulates parameters such as power consumption, temperature, voltages, currents, timing, and other characteristics, was confined to d... » read more

SiC Growth For EVs Is Stressing Manufacturing


The electrification of vehicles is fueling demand for silicon carbide power ICs, but it also is creating challenges in finding and identifying defects in those chips. Coinciding with this is a growing awareness about just how immature SiC technology is and how much work still needs to be done — and how quickly that has to happen. Automakers are pushing heavily into electric vehicles, and t... » read more

Application For Non-Destructive Inspection


IC chip internal measurement We attempted to apply the Hadatomo Z photoacoustic microscope for non-destructive inspection. One of the features of the HadatomoTM Z is simultaneous measurement using photoacoustic imaging and ultrasound imaging. By using an ultrasonic sensor with cen- ter frequency of 60 MHz, high-resolution imaging is possible. Photoacoustic imaging is a method to re... » read more

From Lab To Fab: Increasing Pressure To Fuse IC Processes


Test, metrology, and inspection are essential for both the lab and the fab, but fusing them together so that data created in one is easily transferred to the other is a massive challenge. The chip industry has been striving to bridge these separate worlds for years, but the economics, speed, and complexity of change require a new approach. The never-ending push toward smaller, better-defined... » read more

Ramping Up Power Electronics For EVs


The rapid acceleration of the power devices used in electric vehicles (EVs) is challenging chipmakers to adequately screen the ICs that power these vehicles.[1] While progress toward autonomous driving is grabbing the public’s attention, the electrification of transportation systems is progressing quietly. For the automotive industry, this shift involves a mix of electronic components. Amo... » read more

Challenges Grow For Creating Smaller Bumps For Flip Chips


New bump structures are being developed to enable higher interconnect densities in flip-chip packaging, but they are complex, expensive, and increasingly difficult to manufacture. For products with high pin counts, flip-chip [1] packages have long been a popular choice because they utilize the whole die area for interconnect. The technology has been in use since the 1970s, starting with IBM�... » read more

How Metrology Tools Stack Up In 3D NAND Devices


Multiple innovations in semiconductor processing are needed to enable 3D NAND bit density increases of about 30% per year at ever-decreasing cost per bit, all of which will be required to meet the nonvolatile storage needs of the big data era. 3D NAND is the first truly three-dimensional device in production. It is both a technology driver for new metrology methods and a significant part of ... » read more

3D Structures Challenge Wire Bond Inspection


Adding more layers in packages is making it difficult, and sometimes impossible, to inspect wire bonds that are deep within the different layers. Wire bonds may seem like old technology, but it remains the bonding approach of choice for a broad swath of applications. This is particularly evident in automotive, industrial, and many consumer applications, where the majority of chips are not de... » read more

What Data Center Chipmakers Can Learn From Automotive


Automotive OEMs are demanding their semiconductor suppliers achieve a nearly unmeasurable target of 10 defective parts per billion (DPPB). Whether this is realistic remains to be seen, but systems companies are looking to emulate that level of quality for their data center SoCs. Building to that quality level is more expensive up front, although ultimately it can save costs versus having to ... » read more

← Older posts Newer posts →