Emerging Apps And Challenges For Packaging


Advanced packaging is playing a bigger role and becoming a more viable option to develop new system-level chip designs, but it also presents chipmakers with a confusing array of options and sometimes a hefty price tag. Automotive, servers, smartphones and other systems have embraced advanced packaging in one form or another. For other applications, it's overkill, and a simpler commodity pack... » read more

Slower Metal Bogs Down SoC Performance


Metal interconnect delays are rising, offsetting some of the gains from faster transistors at each successive process node. Older architectures were born in a time when compute time was the limiter. But with interconnects increasingly viewed as the limiter on advanced nodes, there’s an opportunity to rethink how we build systems-on-chips (SoCs). ”Interconnect delay is a fundamental tr... » read more

Scramble For The White Space


Chipmakers are pushing to utilize more of the unused portion of a design for different functions, reducing margin in the rest of the chip to more clearly define that white space. White space typically is used to relieve back-end routing congestion before all of the silicon area is used up. But a significant amount of space still remain unused. That provides an opportunity for inserting monit... » read more

Sensor Fusion Challenges In Cars


The automotive industry is zeroing in on sensor fusion as the best option for dealing with the complexity and reliability needed for increasingly autonomous vehicles, setting the stage for yet another shift in how data from multiple devices is managed and utilized inside a vehicle. The move toward greater autonomy has proved significantly more complicated than anyone expected at first. There... » read more

Interconnects Emerge As Key Concern For Performance


Interconnects are becoming increasingly challenging to design, implement and test as the amount of data skyrockets and the ability to move that data through denser arrays of compute elements and memories becomes more difficult. The idea of an interconnect is rather simple, but ask two people what constitutes an interconnect and you're likely to get very different answers. Interconnects are e... » read more

New Architectures, Much Faster Chips


The chip industry is making progress in multiple physical dimensions and with multiple architectural approaches, setting the stage for huge performance increases based on more modular and heterogeneous designs, new advanced packaging options, and continued scaling of digital logic for at least a couple more process nodes. A number of these changes have been discussed in recent conferences. I... » read more

Rethinking Competitive One Upmanship Among Foundries


The winner in the foundry business used to be determined by who got to the most advanced process node first. For the most part that benchmark no longer works. Unlike in the past, when all of the foundries and IDMs competed using basically the same process, each foundry has gone its own route. This is primarily due to the divergence of end markets, and the realization that as costs increase, ... » read more

The Race To Much More Advanced Packaging


Momentum is building for copper hybrid bonding, a technology that could pave the way toward next-generation 2.5D and 3D packages. Foundries, equipment vendors, R&D organizations and others are developing copper hybrid bonding, which is a process that stacks and bonds dies using copper-to-copper interconnects in advanced packages. Still in R&D, hybrid bonding for packaging provides mo... » read more

Increasing eFPGA Density


How to boost embedded FPGA density to the point where it is competitive with traditional FPGAs, at a lower cost and faster turnaround time. Geoff Tate, CEO of Flex Logix, talks about the importance of interconnects and standard cells in adding flexibility into chips, and why eFPGAs are suddenly gaining attention. » read more

The Next Advanced Packages


Packaging houses are readying their next-generation advanced IC packages, paving the way toward new and innovative system-level chip designs. These packages include new versions of 2.5D/3D technologies, chiplets, fan-out and even wafer-scale packaging. A given package type may include several variations. For example, vendors are developing new fan-out packages using wafers and panels. One is... » read more

← Older posts Newer posts →