Power/Performance Bits: July 10


Heating up EV batteries Researchers from Pennsylvania State University developed a self-heating battery that can charge rapidly in cold conditions, a step they hope could spread adoption of electric vehicles. "Electric vehicles are popular on the west coast because the weather is conducive," said Xiao-Guang Yang, assistant research professor in mechanical engineering, Penn State. "Once you ... » read more

Power/Performance Bits: July 3


Graphene foam devices Scientists at Rice University developed a method for building conductive, three-dimensional objects out of graphene foam, which they say could offer new possibilities for energy storage and flexible electronic sensor applications. The same lab initially created laser-induced graphene, or LIG, in 2014. The process involves heating inexpensive polyimide plastic sheets wi... » read more

Power/Performance Bits: May 8


Cobalt-free cathodes Researchers at the University of California, Berkeley, built lithium-ion battery cathodes without cobalt that can store 50% more energy than traditional cobalt-containing cathodes. Currently, lithium-ion battery cathodes use layered structures, which cobalt is necessary to maintain. When lithium ions move from the cathode to anode during charging, a lot of space is left... » read more

Power/Performance Bits: March 27


Equalizing batteries Engineers at the University of Toledo propose a bilevel equalizer technology to improve the life span of batteries by combining the high performance of an active equalizer with the low cost of a passive equalizer. "Whenever we are talking about batteries, we are talking about cells connected in a series. Over time, the battery is not balanced and limited by the weakest ... » read more

Power/Performance Bits: Oct. 31


Battery material supplies Researchers at MIT, the University of California at Berkeley, and the Rochester Institute of Technology conducted an analysis of whether there are enough raw materials to support increased lithium-ion battery production, expected to grow significantly due to electric vehicles and grid-connected battery systems. They conclude that while in the near future there shou... » read more

Power/Performance Bits: Oct. 3


Slowing down photonics Researchers at the University of Sydney developed a chip capable of optical data into sound waves, slowing data transfer enough to process the information. While speed is a major bonus with photonic systems, it's not as advantageous when processing data. By turning optical signals into acoustic, data can be briefly stored and managed inside the chip for processing, re... » read more

Power/Performance Bits: Sept. 19


Healing perovskites A team from the University of Cambridge, MIT, University of Oxford, University of Bath, and Delft University of Technology discovered a way to heal defects in perovskite solar cells by exposing them to light and just the right amount of humidity. While perovskites show promise for low-cost, efficient photovoltaics, tiny defects in the crystalline structure, called traps,... » read more

Power/Performance Bits: Sept. 5


Energy-harvesting yarn Researchers at the University of Texas at Dallas and Hanyang University in South Korea developed a carbon nanotube yarn that generates electricity when stretched or twisted. Possible applications for the so-called "twistron" yarns include harvesting energy from the motion of ocean waves or from temperature fluctuations. When sewn into a shirt, these yarns served as a sel... » read more

Power/Performance Bits: May 23


Biosupercapacitor Researchers from UCLA and the University of Connecticut designed a biological supercapacitor, a new biofriendly energy storage system which operates using ions from fluids in the human body. The device is harmless to the body's biological systems, say the researchers, and could lead to longer-lasting cardiac pacemakers and other implantable medical devices. The supercapa... » read more

Power/Performance Bits: May 2


Turning bottles into batteries Researchers at the University of California, Riverside used waste glass bottles and a low-cost chemical process to create nanosilicon anodes for high-performance lithium-ion batteries. Billions of glass bottles end up in landfills every year, prompting the researchers to ask whether silicon dioxide in waste beverage bottles could provide high purity silicon ... » read more

← Older posts