Steep Spike For Chip Complexity And Unknowns


Cramming more and different kinds of processors and memories onto a die or into a package is causing the number of unknowns and the complexity of those designs to skyrocket. There are good reasons for combining all of these different devices into an SoC or advanced package. They increase functionality and can offer big improvements in performance and power that are no longer available just b... » read more

Putting Limits On What AI Systems Can Do


New techniques and approaches are starting to be applied to AI and machine learning to ensure they function within acceptable parameters, only doing what they're supposed to do. Getting AI/ML/DL systems to work has been one of the biggest leaps in technology in recent years, but understanding how to control and optimize them as they adapt isn't nearly as far along. These systems are generall... » read more

Many Chiplet Challenges Ahead


Over the past couple of months, Semiconductor Engineering has looked into several aspects of 2.5D and 3D system design, the emerging standards and steps that the industry is taking to make this more broadly adopted. This final article focuses on the potential problems and what remains to be addressed before the technology becomes sustainable to the mass market. Advanced packaging is seen as ... » read more

Designing Low Energy Chips And Systems


Energy optimization is beginning to shift left as design teams begin examining new ways to boost the performance of devices without impacting battery life or ratcheting up electricity costs. Unlike power optimization, where a skilled engineering team may reduce power by 1% to 5%, energy efficiency may be able to cut effective power in half. But those gains require a significant rethinking of... » read more

Hidden Costs In Faster, Low-Power AI Systems


Chipmakers are building orders of magnitude better performance and energy efficiency into smart devices, but to achieve those goals they also are making tradeoffs that will have far-reaching, long-lasting, and in some cases unknown impacts. Much of this activity is a direct result of pushing intelligence out to the edge, where it is needed to process, sort, and manage massive increases in da... » read more

An Integrated Approach To Power Domain And Clock Domain Crossing Verification


Reducing power consumption is essential for both mobile and data center applications. The challenge is to lower power while minimally impacting performance. The solution has been to partition designs into multiple power domains which allow selectively reducing voltage levels or powering off partitions. Traditional low power verification validates only the functional correctness of power control... » read more

2020: A Turning Point In The Chip Industry


At the start of 2020, most of the industry was upbeat and sales forecasts for the year were good. Then the pandemic hit, and fear gripped most of the industry — but not for long. New markets emerged, demand increased, and the levels of innovation went far beyond what had been forecast. While hope is on the horizon that the virus will be contained during 2021, life will not return to the ol... » read more

Power Models For Machine Learning


AI and machine learning are being designed into just about everything, but the chip industry lacks sufficient tools to gauge how much power and energy an algorithm is using when it runs on a particular hardware platform. The missing information is a serious limiter for energy-sensitive devices. As the old maxim goes, you can't optimize what you can't measure. Today, the focus is on functiona... » read more

Waking And Sleeping Create Current Transients


Silicon power-saving techniques are helping to reduce the power required by data centers and other high-intensity computing environments, but they’ve also added a significant challenge for design teams. As islands on high-powered chips go to sleep and wake up, the current requirements change quickly. This happens in a few microseconds, at most. The rapid change of loading creates a challen... » read more

An Integrated Approach To Power Domain And Clock Domain Crossing Verification


Reducing power consumption is essential for both mobile and data center applications. The challenge is to lower power while minimally impacting performance. The solution has been to partition designs into multiple power domains which allow selectively reducing voltage levels or powering off partitions. Traditional low power verification validates only the functional correctness of power control... » read more

← Older posts Newer posts →