Using Silicon Photonics To Reduce Latency On Edge Devices


A new technical paper titled "Delocalized photonic deep learning on the internet’s edge" was published by researchers at MIT and Nokia Corporation. “Every time you want to run a neural network, you have to run the program, and how fast you can run the program depends on how fast you can pipe the program in from memory. Our pipe is massive — it corresponds to sending a full feature-leng... » read more

Simplifying AI Edge Deployment


Barrie Mullins, vice president of product at Flex Logix, explains how a programmable accelerator chip can simplify semiconductor design at the edge, where chips need to be high performance as well as low power, yet developing everything from scratch is too expensive and time-consuming. Programmability allows these systems to stay current with changes in algorithms, which can affect everything f... » read more

Debug This! How To Simplify Coverage Analysis And Closure


For years the process of ASIC and FPGA design and verification debug consisted primarily of comprehending the structure and source code of the design with waveforms showing activity over time, based on testbench stimulus. Today, functional verification is exponentially complex with the emergence of new layers of design requirements (beyond basic functionality) that did not exist years ago — f... » read more

Low Power HW Accelerator for FP16 Matrix Multiplications For Tight Integration Within RISC-V Cores


This new technical paper titled "RedMulE: A Compact FP16 Matrix-Multiplication Accelerator for Adaptive Deep Learning on RISC-V-Based Ultra-Low-Power SoCs" was published by researchers at University of Bologna and ETH Zurich. According to their abstract: "One of the key stumbling stones is the need for parallel floating-point operations, which are considered unaffordable on sub-100 mW extre... » read more

Edge-AI Hardware for Extended Reality


New technical paper titled "Memory-Oriented Design-Space Exploration of Edge-AI Hardware for XR Applications" from researchers at Indian Institute of Technology Delhi and Reality Labs Research, Meta. Abstract "Low-Power Edge-AI capabilities are essential for on-device extended reality (XR) applications to support the vision of Metaverse. In this work, we investigate two representative XR w... » read more

There Is Plenty Of Room At The Top: Imagining Miniaturized Electro-Mechanical Switches In Low-Power Computing Applications


The first computers were built using electro-mechanical components, unlike today’s modern electronic systems. Alan Turing’s cryptanalysis multiplier and Konrad Zuse’s Z2 were invented and built in the first half of the 20th century, and were among the first computers ever constructed. Electro-mechanical switches and relays performed logic operations in these machines. Even after computers... » read more

Image Sensor Trained To Classify Optically Projected Images By Reading Out The Few Most Relevant Pixels


New research paper "Sparse pixel image sensor" from Institute of Photonics, Vienna University of Technology. Abstract "As conventional frame-based cameras suffer from high energy consumption and latency, several new types of image sensors have been devised, with some of them exploiting the sparsity of natural images in some transform domain. Instead of sampling the full image, those devices... » read more

Architecting Faster Computers


To create faster computers, the industry must take a major step back and re-examine choices that were made half a century ago. One of the most likely approaches involves dropping demands for determinism, and this is being attempted in several different forms. Since the establishment of the von Neumann architecture for computers, small, incremental improvements have been made to architectures... » read more

Brokerage System for Integration of LrWPAN Technologies


New academic paper from UK's Leeds Beckett University. Abstract "The prevalent demand for remote data sharing and connectivity has catalysed the development of many wireless network technologies. However, low-power and low-rate wireless network technologies have emerged as the preferred choice (due to cheap procurement and maintenance cost, efficiency, and adaptability). Currently, these gr... » read more

A Framework For Ultra Low-Power Hardware Accelerators Using NNs For Embedded Time Series Classification


In embedded applications that use neural networks (NNs) for classification tasks, it is important to not only minimize the power consumption of the NN calculation, but of the whole system. Optimization approaches for individual parts exist, such as quantization of the NN or analog calculation of arithmetic operations. However, there is no holistic approach for a complete embedded system design ... » read more

← Older posts Newer posts →