Thermal Challenges And Moore’s Law


Steven Woo, fellow and distinguished inventor at Rambus, looks at the evolution of graphics cards over a couple of decades and how designs changed to deal with more graphics and more heat, and why smaller, faster and cheaper doesn’t apply in this market. » read more

Solving The Memory Bottleneck


Chipmakers are scrambling to solve the bottleneck between processor and memory, and they are turning out new designs based on different architectures at a rate no one would have anticipated even several months ago. At issue is how to boost performance in systems, particularly those at the edge, where huge amounts of data need to be processed locally or regionally. The traditional approach ha... » read more

Scaling Battery Technology


Batteries are an essential ingredient for the growth of electronics from small devices used for IoT as well as large batteries for electric cars. Historically, battery energy density improves 5%-8% per year. While this is much slower than the historical improvements from Moore’s Law, it’s still the kind of growth that can result in leaps in efficiency, opening the door for a better experien... » read more

Reducing Software Power


With the slowdown of Moore's Law, every decision made in the past must be re-examined to get more performance or lower power for a given function. So far, software has remained relatively unaffected, but it could be an untapped area for optimization and enable significant power reduction. The general consensus is that new applications such as artificial intelligence and machine learning, whe... » read more

The Race For Better Computational Software


Anirudh Devgan, president of Cadence, sat down with Semiconductor Engineering to talk about computational software, why it's so critical at the edge and in AI systems, and where the big changes are across the semiconductor industry. What follows are excerpts of that conversation. SE: There is no consistent approach to how data will be processed at the edge, in part because there is no consis... » read more

New Technologies To Support 3D-ICs


Semiconductor Engineering sat down to discuss changes required throughout the ecosystem to support three-dimensional (3D) chip design with Norman Chang, chief technologist for the Semiconductor Business Unit of ANSYS; John Park, product management director for IC packaging and cross-platform solutions at Cadence; John Ferguson, director of marketing for DRC applications at Mentor, a Siemens Bus... » read more

Synthesizing Hardware From Software


The ability to automatically generate optimized hardware from software was one of the primary tenets of system-level design automation that was never fully achieved. The question now is whether that will ever happen, and whether it is just a matter of having the right technology or motivation to make it possible. While high-level synthesis (HLS) did come out of this work and has proven to be... » read more

In Memory And Near-Memory Compute


Steven Woo, Rambus fellow and distinguished inventor, talks about the amount of power required to store data and to move it out of memory to where processing is done. This can include changes to memory, but it also can include rethinking compute architectures from the ground up to achieve up to 1 million times better performance in highly specialized systems. Related Find more memor... » read more

5nm Vs. 3nm


Foundry vendors are readying the next wave of advanced processes, but their customers will face a myriad of confusing options—including whether to develop chips at 5nm, wait until 3nm, or opt for something in between. The path to 5nm is well-defined compared with 3nm. After that, the landscape becomes more convoluted because foundries are adding half-node processes to the mix, such as 6nm ... » read more

Advanced Process Control


David Fried, vice president of computational products at Lam Research, looks at shrinking tolerances at advanced processes, how that affects variation in semiconductor manufacturing, and what can be done to achieve the benefits of scaling without moving to new transistor architectures. » read more

← Older posts