中文 English

Taming Non-Predictable Systems


How predictable are semiconductor systems? The industry aims to create predictable systems and yet when a carrot is dangled, offering the possibility of faster, cheaper, or some other gain, decision makers invariably decide that some degree of uncertainty is warranted. Understanding uncertainty is at least the first step to making informed decisions, but new tooling is required to assess the im... » read more

Power/Performance Bits: Jan. 26


Neural networks on MCUs Researchers at MIT are working to bring neural networks to Internet of Things devices. The team's MCUNet is a system that designs compact neural networks for deep learning on microcontrollers with limited memory and processing power. MCUNet is made up of two components. One is TinyEngine, an inference engine that directs resource management. TinyEngine is optimized t... » read more

Improving the Performance Of Deep Neural Networks


Source: North Carolina State University. Authors: Xilai Li, Wei Sun, and Tianfu Wu Abstract: "In state-of-the-art deep neural networks, both feature normalization and feature attention have become ubiquitous. They are usually studied as separate modules, however. In this paper, we propose a light-weight integration between the two schema and present Attentive Normalization (AN). Instead of l... » read more

Fast, Low-Power Inferencing


Power and performance are often thought of as opposing goals, opposite sides of the same coin if you will. A system can be run really fast, but it will burn a lot of power. Ease up on the accelerator and power consumption goes down, but so does performance. Optimizing for both power and performance is challenging. Inferencing algorithms for Convolutional Neural Networks (CNN) are compute int... » read more

Tapping Into Purpose-Built Neural Network Models For Even Bigger Efficiency Gains


Neural networks can be categorized as a set of algorithms modelled loosely after the human brain that can ‘learn’ by incorporating new data. Indeed, many benefits can be derived from developing purpose-built “computationally efficient” neural network models. However, to ensure your model is effective, there are several key requirements that need to be considered. One critical conside... » read more

Power/Performance Bits: Dec. 7


Logic-in-memory with MoS2 Engineers at École Polytechnique Fédérale de Lausanne (EPFL) built a logic-in-memory device using molybdenum disulfide (MoS2) as the channel material. MoS2 is a three-atom-thick 2D material and excellent semiconductor. The new chip is based on floating-gate field-effect transistors (FGFETs) that can hold electric charges for long periods. MoS2 is particularly se... » read more

ResNet-50 Does Not Predict Inference Throughput For MegaPixel Neural Network Models


Customers are considering applications for AI inference and want to evaluate multiple inference accelerators. As we discussed last month, TOPS do NOT correlate with inference throughput and you should use real neural network models to benchmark accelerators. So is ResNet-50 a good benchmark for evaluating relative performance of inference accelerators? If your application is going to p... » read more

Power/Performance Bits: Oct. 27


Room-temp superconductivity Researchers at the University of Rochester, University of Nevada Las Vegas, and Intel created a material with superconducting properties at room temperature, the first time this has been observed. The researchers combined hydrogen with carbon and sulfur to photochemically synthesize simple organic-derived carbonaceous sulfur hydride in a diamond anvil cell, which... » read more

One More Time: TOPS Do Not Predict Inference Throughput


Many times you’ll hear vendors talking about how many TOPS their chip has and imply that more TOPS means better inference performance. If you use TOPS to pick your AI inference chip, you will likely not be happy with what you get. Recently, Vivienne Sze, a professor at MIT, gave an excellent talk entitled “How to Evaluate Efficient Deep Neural Network Approaches.” Slides are also av... » read more

Have Processor Counts Stalled?


Survey data suggests that additional microprocessor cores are not being added into SoCs, but you have to dig into the numbers to find out what is really going on. The reasons are complicated. They include everything from software programming models to market shifts and new use cases. So while the survey numbers appear to be flat, market and technology dynamics could have a big impact in resh... » read more

← Older posts Newer posts →